中文国产日韩欧美视频,午夜精品999,色综合天天综合网国产成人网,色综合视频一区二区观看,国产高清在线精品,伊人色播,色综合久久天天综合观看

《正比例》教案

時間:2023-03-24 11:21:02 教案 我要投稿

《正比例》教案

  作為一名為他人授業(yè)解惑的教育工作者,總歸要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。我們該怎么去寫教案呢?以下是小編精心整理的《正比例》教案,希望對大家有所幫助。

《正比例》教案

《正比例》教案1

  教學(xué)要求:

  1.使學(xué)生認(rèn)識正比例關(guān)系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)判斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。

  2.進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學(xué)生判斷、推理的能力。

  教學(xué)重點(diǎn):認(rèn)識正比例關(guān)系的意義。

  教學(xué)難點(diǎn):掌握成正比例量的變化規(guī)律及其特征。

  教學(xué)過程:

  一、復(fù)習(xí)鋪墊

  1.說出下列每組數(shù)量之間的關(guān)系。

  (1)速度 時間 路程

  (2)單價 數(shù)量 總價

  (3)工作效率 工作時間 工作總量

  2.引入新課。

  上面是已經(jīng)學(xué)過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系。當(dāng)其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認(rèn)識這種變化規(guī)律。今天,先認(rèn)識正比例關(guān)系的意義。(板書課題)

  二、教學(xué)新課

  1.教學(xué)例1。

  出示例l。讓學(xué)生計(jì)算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓 學(xué) 生觀察表里兩種量變化的數(shù)據(jù),思考:

  (1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?

  (2)路程和時間相對應(yīng)數(shù)值的比的比值各是多少?這兩種量變化有什么規(guī)律?

  引導(dǎo)學(xué)生進(jìn)行討論,得出:

  (1)表里的兩種量是所行時間和所行路程。路程和時間是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)路程隨著時間的變化而變化。

  (2)時間擴(kuò)大,路程也擴(kuò)大;時間縮小,路程也縮小。

  (3)可以看出它們的變化規(guī)律是:路程和時間比的比值總是一定的。(板書:路程和時間比的比值一定)因?yàn)槁烦毯蜁r間對應(yīng)數(shù)值比的比值都是50。提問:這里比值50是什么數(shù)量?(誰能說出它的數(shù)量關(guān)系式?想一想,這個式子表示的是什么意思?(把上面板書補(bǔ)充成:速度一定時,路程和時間比的比值一定)

  2.教學(xué)例2。

  出示例2和思考題。要求學(xué)生按剛才學(xué)習(xí)例1的方法學(xué)習(xí)例2,然后把你學(xué)習(xí)中的發(fā)現(xiàn)綜合起來告訴大家。學(xué)生觀察思考后,指名回答。然后再提問:這兩種相關(guān)聯(lián)量的變化規(guī)律是什么?枝數(shù)比的比值一定)你是怎樣發(fā)現(xiàn)的?比值1.6是什么數(shù)量,你能用數(shù)量關(guān)系式表示出來嗎?誰來說說這個式子表示的意思?(把板書補(bǔ)充成c單價一定時,總價和枝數(shù)比的比值一定)

  3.概括。

  (1)綜合例1、例2的共同點(diǎn)。

  提問:請大家比較例l和例2,你發(fā)現(xiàn)這兩個例題有什么共同的地方?(①都有兩種相關(guān)聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對應(yīng)數(shù)值的比的比值一定)

  (2)概括正比例關(guān)系的意義。

  像例l、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢,請同學(xué)們看課本第40頁最后一節(jié)。說明:根據(jù)剛才學(xué)習(xí)例1、例2時發(fā)現(xiàn)的規(guī)律,這里有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。追問;兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,那么上面這種數(shù)量關(guān)系式可以怎樣寫呢? 指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的`變化而變化,它們的比值k是一定的。這時就說x和y成正比例關(guān)系。所以,兩個量成正比例關(guān)系,我們就用式子 =k (一定)來表示。

  4.具體認(rèn)識。

  (1)提問:例l里有哪兩種相關(guān)聯(lián)的量?這兩種量成正比例關(guān)系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵要看什么?

  (2)做練習(xí)八第1題。

  讓學(xué)生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的,要知道兩個量是不是成正比例關(guān)系,只要先看兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時比值是不是一定。如果兩種相關(guān)聯(lián)的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關(guān)系。

  5.教學(xué)例3。

  出示例3,讓學(xué)生思考。提問:怎樣判斷是不是成正比例?哪位同學(xué)說說零件總數(shù)和時間成不成正比例?為什么?請同學(xué)們看一看例3,書上怎樣判斷的,我們說得對不對。追問:判斷兩種量是不是成正比例要怎樣想?強(qiáng)調(diào):關(guān)鍵是列出關(guān)系式,看是不是比值一定。

  三、鞏固練習(xí)

  現(xiàn)在,我們根據(jù)上面的判斷方法來做一些題。

  1.做“練一練”第l題。

  指名學(xué)生口答,說明理由。可以結(jié)合寫出數(shù)量關(guān)系式。

  2.做“練一練”第2題。

  指名口答,并要求說明理由。

  3.做練習(xí)八第2題。

  小黑板出示。讓學(xué)生把成正比例關(guān)系的先勾出來。指名口答,選擇幾題讓學(xué)生說一說怎樣想的?(必要時寫出關(guān)系式讓學(xué)生判斷)

  4.下列題里有哪兩種相關(guān)聯(lián)的量?這兩種量成不成正比例?為什么?

  一種蘋果,買5千克要10元。照這樣計(jì)算,買15千克要30元。

  四、課堂小結(jié)

  這節(jié)課學(xué)習(xí)了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示y和x這兩種相關(guān)聯(lián)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?

  五、家庭作業(yè)

  練習(xí)八第3題。

《正比例》教案2

  教學(xué)要求

  1.理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。

  2.培養(yǎng)同學(xué)們用發(fā)展變化的觀點(diǎn)來分析問題的能力。

  3.培養(yǎng)同學(xué)們概括能力和分析判斷能力。

  教學(xué)重點(diǎn)

  理解正比例的意義。

  教學(xué)難點(diǎn)

  引導(dǎo)同學(xué)們通過觀察、發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的量的變化規(guī)律。

  教學(xué)過程

  一、復(fù)習(xí)

  1.已知路程和時間,求速度?

  2.已知總價和數(shù)量,求單價?

  3.已知工作總量和工作時間,求工作效率?

  二、新知

  1.教學(xué)例1

  投影出示:一列火車1小時行駛90千米,2小時行駛180千米3小時行駛270千米,4小時行駛360千米 ,5小時行駛450千米,6小時行駛540千米,7小時行駛630千米,8小時行駛720千米 6

  (1)出示下表,填表

  一列火車行駛的時間和路程:

  時間

  路程

  填表,思考:再填表中你發(fā)現(xiàn)了什么?

  點(diǎn)撥:時間變化,路程也隨著變化,我們就說時間和路程是兩個相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)

  根據(jù)計(jì)算,你發(fā)現(xiàn)了什么?

  指出:相對應(yīng)的兩個數(shù)的比的比值一樣或固定不變,在數(shù)學(xué)上叫做一定。

  用式子表示他們的關(guān)系是:路程/時間=速度(一定)(板書)

  (2)教師小結(jié):

  同學(xué)們通過填表交流,知道時間和路程是。兩種相關(guān)聯(lián)的量,路程隨著時間的`變化而變化。時間擴(kuò)大,路程隨著擴(kuò)大;時間縮小,路程也隨著縮小。即:路程/時間=速度(一定)

  2.教學(xué)例2

 。1)花布的米數(shù)和總價表:

  數(shù)量1234567

  總價8.216.424.632.841.049.257.4

  (2)觀察圖表,發(fā)現(xiàn)什么規(guī)律?

  用式子表示它們的關(guān)系:總價/米數(shù)=單價(一定)

  (3)抽象概括正比例的意義。

  ①比較例1、例2,思考并討論:這兩個例題有什么共同點(diǎn)?

 、趦煞N相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

 、劭磿,進(jìn)一步理解正比例的意義。

  ④如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系怎樣用字母表示出來?

  x/y=k(一定)

 、莞鶕(jù)正比例的意義以及表示正比例的式子想一想:構(gòu)成正比例關(guān)系的兩種量必須具備哪些條件?

  3.教學(xué)例3

 。1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù),是不是成正比例?

 。2)學(xué)生討論解答。

《正比例》教案3

   教材分析:

  正比例應(yīng)用題這部分內(nèi)容是在教學(xué)過比例的意義和性質(zhì),成正、反比例的量的基礎(chǔ)上進(jìn)行教學(xué)的,這是比和比例知識的綜合運(yùn)用,數(shù)學(xué)教案-正比例應(yīng)用題。教材首先說明應(yīng)用正、反比例的知識可以解決一些實(shí)際問題。例1教學(xué)應(yīng)用正比例的意義來解的基本應(yīng)用題。為了加強(qiáng)知識之間的聯(lián)系,先讓學(xué)生用以前學(xué)過的方法解答,然后教學(xué)用比例的知識解答。通過方框中的說明突出了怎樣進(jìn)行思考的過程,特別強(qiáng)調(diào)了新科技要判斷題目中兩種相關(guān)聯(lián)的量成什么比例關(guān)系,以及列出比例式所需的相等關(guān)系,即“行駛的路程和時間成正比例關(guān)系,所以兩次行的路程和時間的比是相等的”然后再設(shè)未知數(shù),列出等式(方程)解答,并在解答的基礎(chǔ)上引導(dǎo)學(xué)生“想一想”,如果改變例1題目里的條件和問題該怎樣解答。

  教學(xué)對象分析:

  成正比例的量,在生活實(shí)際中應(yīng)用很廣,學(xué)生在前兩年的學(xué)習(xí)中,已接觸過這種情況的問題,如歸一應(yīng)用題,只不過那時是就題論題,沒有上升到一般規(guī)律。這里主要使學(xué)生學(xué)習(xí)用比例的知識來解答,在原有認(rèn)識的基礎(chǔ)上,再讓學(xué)生用其他方法解答同一題目,概括出一般規(guī)律。通過解答使學(xué)生進(jìn)一步熟練地判斷成正比例的量,從而加深對正比例意義的理解。有利于溝通知識間的聯(lián)系,也為中學(xué)的數(shù)學(xué)、物理、化學(xué)等學(xué)科中應(yīng)用比例知識解決一些問題做較好的準(zhǔn)備。同時,由于解答時是根據(jù)正比例意義來列等式,又可以鞏固和加深對所學(xué)的簡易方程的認(rèn)識。所以,在教學(xué)上要十分重視從舊知識引申出新知識,在這過程中,蘊(yùn)涵了抽象概括的方法,運(yùn)用這個概括對新的實(shí)際問題進(jìn)行判斷,這是數(shù)學(xué)學(xué)習(xí)所特有的能力。

  教學(xué)目標(biāo):

  1、掌握用正比例的方法解答相關(guān)應(yīng)用題;

  2、通過解答應(yīng)用題使學(xué)生熟練地判斷兩種相關(guān)聯(lián)的量是否成正比例,

  從而加深對正比例意義的理解;

  3、培養(yǎng)學(xué)生分析問題、解決問題的能力;

  4發(fā)展學(xué)生綜合運(yùn)用知識解決簡單實(shí)際問題的能力。

  教學(xué)重點(diǎn):掌握用正比例的方法解答應(yīng)用題

  教學(xué)難點(diǎn):能正確判斷兩種相關(guān)聯(lián)的量成什么比例,正確列出比例式。

  教學(xué)過程:

  一、 談話導(dǎo)入:

  1、在上新課之前,先考考大家對廣州的認(rèn)識。你知道廣州最高的建筑物是什么?它位于何處?

  2、對于這座廣州最高的建筑物,你還想了解些什么?怎樣測量它大概的高度呢?

  剛才同學(xué)們想出了很多的方法去測量中信廣場的大概高度。今天我們學(xué)習(xí)一種新的方法——正比例應(yīng)用題,學(xué)完后,我們試著用這種方法去計(jì)算中信廣場的大概高度?凑l學(xué)得最棒。

  二、 新課教學(xué):

  先來研究這樣一個問題。

  1、 出示例1

  一輛汽車2小時行駛140千米,照這樣的速度,從甲地到乙地共行駛5小時。甲乙兩地之間的公路長多少千米?

  2、 分析解答應(yīng)用題

  (1) 請一位同學(xué)讀一讀題目

  (2) 這道題要求什么?已知什么條件?

  (3) 能不能用以前學(xué)過的方法解答?

  (4) 讓學(xué)生自己解答,邊訂正邊板書:

  140÷2×5

  =70×5

  =350(千米)

  答:________________。

  3、 激勵引新

  這兩種方法都合理,還可以有什么方法解答呢?

  學(xué)生互議,師引導(dǎo),我們已經(jīng)學(xué)習(xí)了比例的知識,能不能用比例解答呢?

  三、 探討新知

  1、 提出問題

  師:請同學(xué)們結(jié)合課本上的例題,討論以下問題。

  (1) 題目中相關(guān)聯(lián)的兩種量是________和________。

  (2) ________一定,_________和_________成_______比例關(guān)系。

  (3) ______行駛的_____ 和 _____的 ________相等。

  2、 學(xué)生自學(xué)例題后小組討論。

  3、 組間交流:小組代表把討論結(jié)果在班內(nèi)交流

  4、 學(xué)生嘗試解答后評價(指名學(xué)生板演)

  5、 怎樣檢驗(yàn)?把檢驗(yàn)過程寫出來。

  6、 概括總結(jié)

  (1) 用比例解答應(yīng)用題與用算術(shù)方法解答應(yīng)用題教師這道題的解法,如果題目中沒有要求的,我們采取任何一種方法都可以,但如果題目要求用比例解的,就一定要用比例的方法解,小學(xué)數(shù)學(xué)教案《數(shù)學(xué)教案-正比例應(yīng)用題》。

  (2) 明確解題步驟。(板)

  用比例方法解答應(yīng)用題,具體步驟是怎樣的呢?請根據(jù)我們所做的例題歸納解題步驟。

  1. 分析判斷

  2. 找出列比例式所需的相等關(guān)系

  3. 設(shè)未知數(shù)列等式

  4. 求解

  5. 檢驗(yàn)寫答語

  四、 練習(xí)提高

  1、 基本練習(xí)

  (1)例題改編

 、 如果把這道題的第三個和問題改成:“已知公路長350千米,需要行駛多少小時?”該怎樣解答?

 、 讓學(xué)生解答改編后的應(yīng)用題,集體訂正。

 、 小結(jié) :比較一下改編后的題和例1有什么聯(lián)系和區(qū)別?

  例1的條件和問題以后,題中成正比例的關(guān)系仍沒變,解答的方法出沒有改變,只是要設(shè)需要行駛的小時數(shù)為x,列出的等式是: 140/2=350/x

 。ǎ玻玻错撟鲆蛔觯鹤寣W(xué)生直接用比例知識解答。做完后,請幾個同學(xué)說一說:你為什么這樣列式?

 。、變式練習(xí)

  3、實(shí)踐運(yùn)用

 。ǎ保﹨R報(bào)數(shù)據(jù):剛才我們上課時提到怎教材分析:

  正比例應(yīng)用題這部分內(nèi)容是在教學(xué)過比例的意義和性質(zhì),成正、反比例的量的基礎(chǔ)上進(jìn)行教學(xué)的,這是比和比例知識的綜合運(yùn)用。教材首先說明應(yīng)用正、反比例的知識可以解決一些實(shí)際問題。例1教學(xué)應(yīng)用正比例的意義來解的基本應(yīng)用題。為了加強(qiáng)知識之間的聯(lián)系,先讓學(xué)生用以前學(xué)過的方法解答,然后教學(xué)用比例的知識解答。通過方框中的.說明突出了怎樣進(jìn)行思考的過程,特別強(qiáng)調(diào)了新科技要判斷題目中兩種相關(guān)聯(lián)的量成什么比例關(guān)系,以及列出比例式所需的相等關(guān)系,即“行駛的路程和時間成正比例關(guān)系,所以兩次行的路程和時間的比是相等的”然后再設(shè)未知數(shù),列出等式(方程)解答,并在解答的基礎(chǔ)上引導(dǎo)學(xué)生“想一想”,如果改變例1題目里的條件和問題該怎樣解答。

  教學(xué)對象分析:

  成正比例的量,在生活實(shí)際中應(yīng)用很廣,學(xué)生在前兩年的學(xué)習(xí)中,已接觸過這種情況的問題,如歸一應(yīng)用題,只不過那時是就題論題,沒有上升到一般規(guī)律。這里主要使學(xué)生學(xué)習(xí)用比例的知識來解答,在原有認(rèn)識的基礎(chǔ)上,再讓學(xué)生用其他方法解答同一題目,概括出一般規(guī)律。通過解答使學(xué)生進(jìn)一步熟練地判斷成正比例的量,從而加深對正比例意義的理解。有利于溝通知識間的聯(lián)系,也為中學(xué)的數(shù)學(xué)、物理、化學(xué)等學(xué)科中應(yīng)用比例知識解決一些問題做較好的準(zhǔn)備。同時,由于解答時是根據(jù)正比例意義來列等式,又可以鞏固和加深對所學(xué)的簡易方程的認(rèn)識。所以,在教學(xué)上要十分重視從舊知識引申出新知識,在這過程中,蘊(yùn)涵了抽象概括的方法,運(yùn)用這個概括對新的實(shí)際問題進(jìn)行判斷,這是數(shù)學(xué)學(xué)習(xí)所特有的能力。

  教學(xué)目標(biāo):

  1、掌握用正比例的方法解答相關(guān)應(yīng)用題;

  2、通過解答應(yīng)用題使學(xué)生熟練地判斷兩種相關(guān)聯(lián)的量是否成正比例,

  從而加深對正比例意義的理解;

  3、培養(yǎng)學(xué)生分析問題、解決問題的能力;

  4發(fā)展學(xué)生綜合運(yùn)用知識解決簡單實(shí)際問題的能力。

  教學(xué)重點(diǎn):掌握用正比例的方法解答應(yīng)用題

  教學(xué)難點(diǎn):能正確判斷兩種相關(guān)聯(lián)的量成什么比例,正確列出比例式。

  教學(xué)過程:

  一、 談話導(dǎo)入:

  1、在上新課之前,先考考大家對廣州的認(rèn)識。你知道廣州最高的建筑物是什么?它位于何處?

  2、對于這座廣州最高的建筑物,你還想了解些什么?怎樣測量它大概的高度呢?

  剛才同學(xué)們想出了很多的方法去測量中信廣場的大概高度。今天我們學(xué)習(xí)一種新的方法——正比例應(yīng)用題,學(xué)完后,我們試著用這種方法去計(jì)算中信廣場的大概高度?凑l學(xué)得最棒。

  二、 新課教學(xué):

  先來研究這樣一個問題。

  1、 出示例1

  一輛汽車2小時行駛140千米,照這樣的速度,從甲地到乙地共行駛5小時。甲乙兩地之間的公路長多少千米?

  2、 分析解答應(yīng)用題

  (1) 請一位同學(xué)讀一讀題目

  (2) 這道題要求什么?已知什么條件?

  (3) 能不能用以前學(xué)過的方法解答?

  (4) 讓學(xué)生自己解答,邊訂正邊板書:

  140÷2×5

  =70×5

  =350(千米)

  答:________________。

  3、 激勵引新

  這兩種方法都合理,還可以有什么方法解答呢?

  學(xué)生互議,師引導(dǎo),我們已經(jīng)學(xué)習(xí)了比例的知識,能不能用比例解答呢?

  三、 探討新知

  1、 提出問題

  師:請同學(xué)們結(jié)合課本上的例題,討論以下問題。

  (1) 題目中相關(guān)聯(lián)的兩種量是________和________。

  (2) ________一定,_________和_________成_______比例關(guān)系。

  (3) ______行駛的_____ 和 _____的 ________相等。

  2、 學(xué)生自學(xué)例題后小組討論。

  3、 組間交流:小組代表把討論結(jié)果在班內(nèi)交流

  4、 學(xué)生嘗試解答后評價(指名學(xué)生板演)

  5、 怎樣檢驗(yàn)?把檢驗(yàn)過程寫出來。

  6、 概括總結(jié)

  (1) 用比例解答應(yīng)用題與用算術(shù)方法解答應(yīng)用題教師這道題的解法,如果題目中沒有要求的,我們采取任何一種方法都可以,但如果題目要求用比例解的,就一定要用比例的方法解。

  (2) 明確解題步驟。(板)

  用比例方法解答應(yīng)用題,具體步驟是怎樣的呢?請根據(jù)我們所做的例題歸納解題步驟。

  1. 分析判斷

  2. 找出列比例式所需的相等關(guān)系

  3. 設(shè)未知數(shù)列等式

  4. 求解

  5. 檢驗(yàn)寫答語

  四、 練習(xí)提高

  1、 基本練習(xí)

  (1)例題改編

 、 如果把這道題的第三個和問題改成:“已知公路長350千米,需要行駛多少小時?”該怎樣解答?

  ② 讓學(xué)生解答改編后的應(yīng)用題,集體訂正。

 、 小結(jié) :比較一下改編后的題和例1有什么聯(lián)系和區(qū)別?

  例1的條件和問題以后,題中成正比例的關(guān)系仍沒變,解答的方法出沒有改變,只是要設(shè)需要行駛的小時數(shù)為x,列出的等式是: 140/2=350/x

 。ǎ玻玻错撟鲆蛔觯鹤寣W(xué)生直接用比例知識解答。做完后,請幾個同學(xué)說一說:你為什么這樣列式?

 。、變式練習(xí)

 。、實(shí)踐運(yùn)用

  (1)匯報(bào)數(shù)據(jù):剛才我們上課時提到怎樣測量和計(jì)算中信廣場的大概高度,課前我請幾位同學(xué)去測得中信廣場的一些數(shù)據(jù),F(xiàn)在請這些同學(xué)跟我們匯報(bào)一下。

 。ǎ玻┠苡眠@些數(shù)據(jù)編一道正比例應(yīng)用題嗎?

 。ǎ常┬〗M合作編題

  五、 總結(jié)

  今天我們學(xué)習(xí)的是如何用正比例的方法解答以前學(xué)過的應(yīng)用題。解答的步驟怎樣的呢?

  樣測量和計(jì)算中信廣場的大概高度,課前我請幾位同學(xué)去測得中信廣場的一些數(shù)據(jù),F(xiàn)在請這些同學(xué)跟我們匯報(bào)一下。

 。ǎ玻┠苡眠@些數(shù)據(jù)編一道正比例應(yīng)用題嗎?

 。ǎ常┬〗M合作編題。

《正比例》教案4

  一、教學(xué)內(nèi)容:

  正比例函數(shù)的圖象和性質(zhì)

  二、教學(xué)目標(biāo)

  (一)知識與能力

  1、進(jìn)一步鞏固正比例函數(shù)的概念,會畫正比例函數(shù)的圖象,進(jìn)一步熟悉函數(shù)圖象作圖步驟。

  2、能根據(jù)正比例函數(shù)圖象觀察、發(fā)現(xiàn)歸納出它的性質(zhì),并會簡單運(yùn)用。

 。ǘ┻^程與方法

  1、通過實(shí)例函數(shù)圖象畫法的學(xué)習(xí),發(fā)現(xiàn)并總結(jié)正比例函數(shù)圖象的常用畫法。

  2、通過觀察、探究、分析、引導(dǎo)學(xué)生發(fā)現(xiàn)正比例函數(shù)的性質(zhì)。

  3、培養(yǎng)學(xué)生善于觀察問題發(fā)現(xiàn)結(jié)論,了解數(shù)形結(jié)合及由一般到特殊的數(shù)學(xué)思想。

 。ㄈ┣楦袘B(tài)度及價值觀

  培養(yǎng)學(xué)生積極參與數(shù)學(xué)活動,勇于探究,發(fā)現(xiàn)數(shù)學(xué)的現(xiàn)象和規(guī)律,培養(yǎng)學(xué)生的數(shù)學(xué)交流能力和團(tuán)隊(duì)協(xié)作精神。

  三、教學(xué)重點(diǎn):

  正比例函數(shù)圖象的畫法及性質(zhì)的探索。

  四、教學(xué)難點(diǎn):

  發(fā)現(xiàn)、歸納正比例函數(shù)的性質(zhì)。

  五、教法與學(xué)法

  教法:本節(jié)課選用引導(dǎo)學(xué)生觀察,發(fā)現(xiàn)法和探索實(shí)踐歸納法。本節(jié)課的難點(diǎn)是發(fā)現(xiàn)正比例函數(shù)性質(zhì),因此我通過教師引導(dǎo),啟發(fā)調(diào)動學(xué)生的積極性,讓學(xué)生在課堂上多活動(畫、圖、交流、展示)、多觀察(圖象), 主動參與到整個教學(xué)活動中來,最后發(fā)現(xiàn)其性質(zhì)。

  學(xué)法指導(dǎo):教師引導(dǎo)學(xué)生觀察、發(fā)現(xiàn)、歸納的學(xué)習(xí)方法。

  六、教具:三角板、多媒體。

  七、教學(xué)過程。 教學(xué)過程:

 。1) 溫故知新,引入課題。 1、下列函數(shù)哪些是正比例函數(shù)?

 。1)y=-3x (2)y= x + 3 (3) y= 4x (4)y= x2

  2、(學(xué)生回答完上述問題后提問概念)

  一般地,形如y= kx(K≠0)的函數(shù),叫正比例函數(shù),其中K叫做比例系數(shù)。

  3、畫函數(shù)圖象的一般步驟

 。1)列表 (2)描點(diǎn) (3)連線 學(xué)生回答后:

  教師引導(dǎo):現(xiàn)在我們已經(jīng)知道正比例函數(shù)的意義及畫圖象的步驟,那么正比例函數(shù)的圖象有什么特征呢?

  出示課題

  (二)探究正比例函數(shù)的圖象和性質(zhì) 例1、畫出下列正比例函數(shù)的圖象。 (1)y=2x(2)y=-2x

  解(1)函數(shù)y=2x中x 可取任意實(shí)數(shù),列表如下: 描點(diǎn) 連線

  (2)學(xué)生練習(xí)畫出函數(shù)y=-2x的圖象。

  (3)提出問題

  師:觀察上面的函數(shù)圖象,它們的形狀相同嗎?是什么?一定經(jīng)過哪些象限和特殊點(diǎn)?

  生甲:一條直線

  生乙:過原點(diǎn)的直線,y=2x的圖象過一、三象限,y=-2x的圖象過二、四象限。

  師:點(diǎn)評學(xué)生后

  正比例函數(shù)的.圖是經(jīng)過原點(diǎn)(0,0)和(1、K)的一條直線。

  師:通過前面的探討,同學(xué)們發(fā)現(xiàn)畫正比例函數(shù)圖象有更簡單的方法嗎?為什么?

  生乙:過原點(diǎn)畫一條直線。

  生丙:過原點(diǎn)和(1、K)兩點(diǎn)畫一條直線。

  師:點(diǎn)評后師生共同歸納出一般規(guī)律:一般地,正比例函數(shù)y= kx (K≠0)的圖象過(0,0),(1、K)兩點(diǎn)的直線,我把函數(shù)y= kx 的圖象叫直線y= kx ,以后畫y= kx 圖像時通常選取(0,0)和(1、K)兩點(diǎn)。

 。ㄈ⿲W(xué)生動手實(shí)踐“兩點(diǎn)法”畫正比例函數(shù)圖象。

  11

 。1)y= x (1)y= -x

  22

  1

  y= x

  2

  y= -

  師:比較以上函數(shù),觀察它們的圖象,思考回答下列問題:

  1、圖象的位置與K值有何聯(lián)系?

  2、正比例函數(shù)中y如何隨x的變化而變化?通過研討,觀察、討論、發(fā)現(xiàn)結(jié)論:K>0時,y=kx 圖象過一、三象限,y隨x的增大而增大,k<0時,圖象過二、

  1

  x 2

  四象限,y隨x的增大而減小。

  師:除了從圖上看出,還有別的方法得出y隨x的變化規(guī)律嗎? 生:列表過程中

 。ㄋ模╈柟叹毩(xí)

  1、用你認(rèn)為最簡單的方法畫出下列函數(shù)圖象。

 。1)y=1.5x (2) y=-3x

  2、正比例函數(shù)y=-4x的圖象是過( )和( )兩點(diǎn)的一條直線,圖象過象限,y隨x的。

  3、正比例函數(shù)y=(m-1)x的圖象過一、三象限,則m的取值范圍是。 A.m=1 B.m>1C.m<1 D.m≥1

  11

  4、下列函數(shù)①y=5x ② y=-3x③y= x ④y= -x中,y隨x的增大而

  23

  減小的是 。

  5、正比例函數(shù)y=(1-2m)xm2-3圖象過第二、四限, 求m值。

 。ㄎ澹┬〗Y(jié):談一談,本節(jié)課你有什么收獲?(知識上,方法上)學(xué)生回答后,出示下列內(nèi)容。

 。┎贾米鳂I(yè)

  A:課本習(xí)題14.2第1題,練習(xí)冊33頁 第3、9 題。 B:課本習(xí)題14.2第1,2題。

 。ㄆ撸┌鍟O(shè)計(jì):

  實(shí)踐操作正比例函數(shù) 分析、發(fā)現(xiàn)歸納正鞏固練習(xí) 圖象的畫法 比例函數(shù)的性質(zhì) 課堂小結(jié)

 。ò耍┱n后反思:另附

《正比例》教案5

  【教學(xué)內(nèi)容】

  《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》六年級下冊39頁~40頁,練習(xí)七第1、2題。

  【教學(xué)目標(biāo)】

  1、通過觀察、比較、判斷、歸納等方法,幫助學(xué)生理解正比例的意義。

  2、培養(yǎng)學(xué)生用事物相互聯(lián)系和發(fā)展變化的觀點(diǎn)來分析問題,使學(xué)生能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。

  3、用表示變量之間的關(guān)系,初步滲透函數(shù)思想。

  【教學(xué)重點(diǎn)】

  理解正比例的意義。

  【教學(xué)難點(diǎn)】

  引導(dǎo)學(xué)生通過觀察、思考發(fā)現(xiàn)兩種相關(guān)聯(lián)的量的比值一定,概括出成正比例的'概念。

  【教具準(zhǔn)備】

  學(xué)生實(shí)驗(yàn)錄像課件

  一、觀察實(shí)驗(yàn),引入新課

  1、認(rèn)識實(shí)驗(yàn)器材

 。1)談話:同學(xué)們,你們喜歡做實(shí)驗(yàn)嗎?我們一起去實(shí)驗(yàn)室瞧瞧吧。ㄕn件出示:實(shí)驗(yàn)桌和實(shí)驗(yàn)器材。)

 。2)提問:實(shí)驗(yàn)桌上有什么呢?

  (3)學(xué)生匯報(bào):(6個大小相同的玻璃杯。1把尺子。1桶水。還有一張實(shí)驗(yàn)報(bào)告單。)

  (4)出示實(shí)驗(yàn)報(bào)告單:

《正比例》教案6

  教學(xué)要求:

  1.使學(xué)生認(rèn)識正比例關(guān)系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。

  2.進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學(xué)生判斷、推理的能力。

  教學(xué)重點(diǎn):

  認(rèn)識正比例關(guān)系的意義。

  教學(xué)難點(diǎn):

  掌握成正比例量的變化規(guī)律及其特征。

  教學(xué)過程:

  一、復(fù)習(xí)鋪墊

  1.說出下列每組數(shù)量之間的關(guān)系。

  (1)速度時間路程

  (2)單價數(shù)量總價

  (3)工作效率工作時間工作總量

  2.引入新課。

  上面是已經(jīng)學(xué)過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系。當(dāng)其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認(rèn)識這種變化規(guī)律。今天,先認(rèn)識正比例關(guān)系的意義。(板書課題)

  二、自主探究:

  1.教學(xué)例1。

  出示例l。讓學(xué)生計(jì)算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓學(xué)生觀察表里兩種量變化的數(shù)據(jù),思考:

  (1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?

  (2)長方形的面積隨著那種量的變化而變化的?你能看出它們變化的特點(diǎn)嗎?

 。3)分別找出面積與款項(xiàng)對應(yīng)的數(shù),面積與寬的比各是幾比幾?比值各是多少?

  引導(dǎo)學(xué)生進(jìn)行討論,得出:

  (1)表里的兩種量是長方形的寬與面積(長與面積)。寬與面積(長與面積)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)面積隨著寬(長)的變化而變化。

  (2)寬(長)擴(kuò)大,面積也擴(kuò)大;寬(長)縮小,面積也縮小。

  (3)可以看出它們的變化規(guī)律是:面積與寬(面積與長)比的比值總是一定的。(板書:面積和寬比的比值一定)因?yàn)槊娣e和寬(面積與長)對應(yīng)數(shù)值比的比值都是5(2)。提問:這里比值5(2)是什么數(shù)量?誰能說出它的數(shù)量關(guān)系式?板書:面積/寬=長(一定)面積/長=寬(一定)想一想,這個式子表示的是什么意思?(把上面板書補(bǔ)充成:長一定時,面積和寬比的比值一定寬一定時,面積和長比的比值一定)

  2.教學(xué)例2。

  出示例2。要求學(xué)生按剛才學(xué)習(xí)例1的方法學(xué)習(xí)例2,然后把你學(xué)習(xí)中的發(fā)現(xiàn)綜合起來告訴大家。學(xué)生觀察思考后,指名回答。然后再提問:這兩種相關(guān)聯(lián)量的'變化規(guī)律是什么?你是怎樣發(fā)現(xiàn)的?你能用數(shù)量關(guān)系式表示出來嗎?誰來說說這個式子表示的意思?(把板書補(bǔ)充成單價一定時,總價和數(shù)量比的比值一定)

  3.概括正比例的意義。

  (1)綜合例1、例2的共同點(diǎn)。

  提問:請大家比較例l和例2,你發(fā)現(xiàn)這兩個例題有什么共同的地方?(①都有兩種相關(guān)聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對應(yīng)數(shù)值的比的比值一定)

  (2)概括正比例關(guān)系的意義。

  像例l、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢,請同學(xué)們看課本第95頁最后連個自然段。說明:根據(jù)剛才學(xué)習(xí)例1、例2時發(fā)現(xiàn)的規(guī)律,這里有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。追問;兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,那么上面這種數(shù)量關(guān)系式可以怎樣寫呢?指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時就說x和y成正比例關(guān)系。所以,兩個量成正比例關(guān)系,我們就用式子=k(一定)來表示。

  4.教學(xué)例3學(xué)生看書自學(xué),小組討論,集體交流。

  (1)數(shù)量與時間是不是兩種相關(guān)聯(lián)的量?

 。2)數(shù)量與時間有什么關(guān)系?他們的比值是誰?比值是不是不變的?

  (3)判斷數(shù)量與時間是不是成正比例?

  5.完成97頁練一練。

  三、鞏固練習(xí)

  1.(1)提問:例l里有哪兩種相關(guān)聯(lián)的量?這兩種量成正比例關(guān)系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵要看什么?

  2.做練習(xí)十一第1題。

  讓學(xué)生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的正比例的意義,要知道兩個量是不是成正比例關(guān)系,只要先看兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時比值是不是一定。如果兩種相關(guān)聯(lián)的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關(guān)系。

  3.下列題里有哪兩種相關(guān)聯(lián)的量?這兩種量成不成正比例?為什么?

  一種蘋果,買5千克要10元。照這樣計(jì)算,買15千克要30元。

  四、課堂小結(jié)

  這節(jié)課學(xué)習(xí)了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示y和x這兩種相關(guān)聯(lián)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?關(guān)鍵是列出關(guān)系式,看是不是比值一定。

  五、家庭作業(yè)

  練習(xí)十一第2~6題。

《正比例》教案7

  教學(xué)目標(biāo):

  1、知道與正比例函數(shù)的意義.

  2、能寫出實(shí)際問題中正比例關(guān)系與關(guān)系的解析式.

  3、滲透數(shù)學(xué)建模的思想,使學(xué)生體會到數(shù)學(xué)的抽象性和廣泛的應(yīng)用性.

  4、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生分析問題、解決問題的能力.

  教學(xué)重點(diǎn):對于與正比例函數(shù)概念的理解.

  教學(xué)難點(diǎn):根據(jù)具體條件求與正比例函數(shù)的解析式.

  教學(xué)方法:結(jié)構(gòu)教學(xué)法、以學(xué)生“再創(chuàng)造”為主的教學(xué)方法

  教學(xué)過程:

  1、復(fù)習(xí)舊課

  前面我們學(xué)習(xí)了函數(shù)的相關(guān)知識,(教師在黑板上畫出本章結(jié)構(gòu)并讓學(xué)生說出前三節(jié)的'內(nèi)容)

  2、引入新課

  就象以前我們學(xué)習(xí)方程、一元一次方程;不等式、一元一次不等式的內(nèi)容時一樣,我們在學(xué)習(xí)了函數(shù)這個概念以后,要學(xué)習(xí)一些具體的函數(shù),今天我們要學(xué)習(xí)的是.

  顧名思義,誰能根據(jù)這個名字,類比一元一次方程、一元一次不等式的概念能舉出一些的例子?(學(xué)生完全具備這種類比的能力,所以要快、不要耽誤太多時間叫幾個同學(xué)回答就可以了.教師將學(xué)生的正確的例子寫在黑板上)

  這些函數(shù)有什么共同特點(diǎn)呢?(注意根據(jù)學(xué)生情況適當(dāng)引導(dǎo),看能否歸納出一般結(jié)果.)不難看出函數(shù)都是用自變量的一次式表示的,可以寫成( )的形式.

  一般地,如果( 是常數(shù), )(括號內(nèi)用紅字強(qiáng)調(diào))那么y叫做x的.特別地,當(dāng)b=0時, 就成為( 是常數(shù), )

  3、例題講解

  例1、某油管因地震破裂,導(dǎo)致每分鐘漏出原油30公升

  (1如果x 分鐘共漏出y 公升,寫出y與x之間的函數(shù)關(guān)系式

  (2)破裂3.5小時后,共漏出原油多少公升

《正比例》教案8

  素質(zhì)教育目標(biāo)

  (一)知識教學(xué)點(diǎn)

  1.使學(xué)生理解正比例的意義。

  2.能根據(jù)正比例的意義判斷兩種量是不是成正比例。

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生用發(fā)展變化的觀點(diǎn)來分析問題的能力。

  2.培養(yǎng)學(xué)生抽象概括能力和分析判斷能力。

 。ㄈ┑掠凉B透點(diǎn)

  1.通過引導(dǎo)學(xué)生用發(fā)展變化的觀點(diǎn)來分析問題,使學(xué)生進(jìn)一步受到辯證唯物主義觀點(diǎn)的啟蒙教育。

  2.進(jìn)一步滲透函數(shù)思想。

  教學(xué)重點(diǎn):使學(xué)生理解正比例的意義。

  教學(xué)難點(diǎn):引導(dǎo)學(xué)生通過觀察、思考發(fā)現(xiàn)兩種相關(guān)聯(lián)的量的變化規(guī)律,即它們相對應(yīng)的數(shù)的比值一定,從而概括出正比例關(guān)系的概念。

  教具學(xué)具準(zhǔn)備:投影儀、投影片、小黑板。

  教學(xué)步驟

  一、鋪墊孕伏

  用投影逐一出示下列題目,請同學(xué)回答:

  1.已知路程和時間,怎樣求速度?

  2.已知總價和數(shù)量,怎樣求單價?

  3.已知工作總量和工作時間,怎樣求工作效率?

  二、探究新知

  1.導(dǎo)入新課:這些都是我們已經(jīng)學(xué)過的常見的數(shù)量關(guān)系。這節(jié)課,我們繼續(xù)研究這些數(shù)量關(guān)系中的一些特征。

  2.教學(xué)例1

 。1)投影出示:一列火車1小時行駛60千米,2小時行駛120千米,3小時行駛180千米,4小時行駛240千米,5小時行駛300千米,6小時行駛360千米,7小時行駛420千米,8小時行駛480千米……

 。2)出示下表,并根據(jù)上述內(nèi)容填表。

  一列火車行駛的時間和所行的路程如下表

  (3)邊填表邊思考:在填表過程中,你發(fā)現(xiàn)了什么?

  學(xué)生交流時,使之明確。

 、俦碇杏袝r間和路程兩種量。

  ②當(dāng)時間是1小時,路程則是60千米,時間是2小時,路程是120千米……時間變化,路程也隨著變化,時間擴(kuò)大,路程隨著擴(kuò)大;時間縮小,路程也隨著縮小。

  教師點(diǎn)撥:

  像這樣,時間變化,路程也隨著變化,我們就說,時間和路程是兩種相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)

 、廴绻麑W(xué)生沒有問題,教師提示:請每位同學(xué)任選一組相對應(yīng)的數(shù)據(jù),計(jì)算出路程與時間的比的比值。

  教師問:根據(jù)計(jì)算,你發(fā)現(xiàn)了什么?

  引導(dǎo)學(xué)生得出:相對應(yīng)的兩個數(shù)的比值都是60或都一樣,固定不變等。

  教師指出:相對應(yīng)的兩個數(shù)的比的比值都一樣或固定不變,在數(shù)學(xué)上叫做“一定”。(板書:相對應(yīng)的兩個數(shù)的比值一定)

 、鼙戎60,實(shí)際就是火車的速度。用式子表示它們的關(guān)系就是:

 。4)教師小結(jié):

  剛才同學(xué)們通過填表、交流,我們知道時間和路程是兩種相關(guān)聯(lián)的量,路程隨著時間的變化而變化。時間擴(kuò)大,路程隨著擴(kuò)大;時間縮小,路程也隨著縮小。它們擴(kuò)大、縮小的規(guī)律是:路程和時間的比的比值總是一定的。

  3.教學(xué)例2

 。1)出示例2:在一間布店的柜臺上,有一張寫著某種花布的.米數(shù)和總價的表。

 。2)觀察上表,引導(dǎo)學(xué)生明確:

 、俦碇杏袛(shù)量(米數(shù))和總價這兩種量,它們是兩種相關(guān)聯(lián)的量。

 、诳們r隨米數(shù)的變化情況是:

  米數(shù)擴(kuò)大,總價隨著擴(kuò)大;米數(shù)縮小,總價也隨著縮小。

  ③相對應(yīng)的總價和米數(shù)的比的比值是一定的。

  ④比值3.1,實(shí)際就是這種花布的單價。用式子表示它們的關(guān)系就是:

 。3)師生小結(jié):通過剛才的觀察和分析,我們知道總價和米數(shù)也是兩種什么樣的量?(兩種相關(guān)聯(lián)的量)為什么?(總價隨著米數(shù)的變化而變化。)怎樣變化?(米數(shù)擴(kuò)大,總價隨著擴(kuò)大;米數(shù)縮小,總價隨著縮小。)它們擴(kuò)大、縮小的規(guī)律是怎樣的?(總價和米數(shù)的比的比值總是一定的。)

  4.抽象概括正比例的意義。

  (1)比較例1、例2,思考并討論,這兩個例子有什么共同點(diǎn)?

 。2)學(xué)生初步交流時引導(dǎo)學(xué)生明確:

 、倮1中有路程和時間兩種量;例2中有米數(shù)和總價兩種量。即它們都有兩種相關(guān)聯(lián)的量;

 、诶1中時間變化,路程就隨著變化;例2中米數(shù)變化,總價也隨著變化。

  教師點(diǎn)撥:像這樣,我們就可以說:一種量變化,另一種量也隨著變化。(板書)

 、劾1中路程與時間的比的比值一定:例2中總價與米數(shù)的比的比值一定。概括地講就是:兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定。

 。▽W(xué)生答不出來時,教師引導(dǎo)、點(diǎn)撥,并補(bǔ)充板書:兩種量中)

 。3)引導(dǎo)學(xué)生抽象概括出兩例的共同點(diǎn):

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定。

 。4)教師指明:兩種相關(guān)聯(lián)的量,一種變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

  (補(bǔ)充板書:如果這成正比例的量正比例關(guān)系)

  這就是我們這節(jié)課學(xué)習(xí)的“正比例的意義”(板書課題)

 。5)看書19、20頁的內(nèi)容,進(jìn)一步理解正比例的意義。

 。6)教師說明:在例1中,路程隨著時間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時間是成正比例的量。

 。7)想一想:在例2中,有哪兩種相關(guān)聯(lián)的量?它們是不是成正比例的量?為什么?

 。8)教師提出:如果字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系怎樣用字母表示出來?

  (9)教師提出:根據(jù)正比例的意義以及表示正比例關(guān)系的式子想一想:構(gòu)成正比例關(guān)系的兩種量必須具備哪些條件?

  5.教學(xué)例3

 。1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

  (2)根據(jù)正比例的意義,由學(xué)生討論解答。

 。3)匯報(bào)判斷結(jié)果,并說明判斷的根據(jù)。

  教師板書:

  面粉的總重量和袋數(shù)是兩種相關(guān)聯(lián)的量。

  所以面粉的總重量和袋數(shù)成正比例。

  6.反饋練習(xí)

  讓學(xué)生試做第21頁的做一做,并訂正。

  三、鞏固發(fā)展

  1.完成練習(xí)三第1題。

  先想一想成正比例的量要滿足哪幾個條件?再算出各表相對應(yīng)數(shù)的比的比值。如果相等,列關(guān)系式判斷。第(3)題不成比例,訂正時要學(xué)生說明為什么?

  2.完成練習(xí)三第2題的(1)-(9)

  先讓學(xué)生自己判斷,再訂正。

  四、全課小結(jié)(師生共同進(jìn)行)

  通過這節(jié)課的學(xué)習(xí),你都知道了什么?怎樣判斷兩種量是否成正比例?

《正比例》教案9

  教學(xué)目標(biāo)

  1.經(jīng)歷從具體實(shí)例中認(rèn)識成正比例的量的過程,初步理解正比例的意義,學(xué)會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。

  2.在認(rèn)識成正比例的量的過程中,初步體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學(xué)模型,進(jìn)一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。

  3.進(jìn)一步體會數(shù)學(xué)與日常生活的密切聯(lián)系,增強(qiáng)從生活現(xiàn)象中探索數(shù)學(xué)知識和規(guī)律的意識。

  教學(xué)重點(diǎn)

  正確理解正比例的意義,并能準(zhǔn)確判斷成正比例的量。

  教學(xué)難點(diǎn)

  引導(dǎo)學(xué)生通過觀察、思考發(fā)現(xiàn)兩種相關(guān)聯(lián)的量的變化規(guī)律,概括出正比例關(guān)系的概念。

  教學(xué)資源

  學(xué)生已學(xué)過一些常見的數(shù)量關(guān)系和計(jì)算公式,掌握比和比例的知識。

  預(yù)習(xí)菜單。

  預(yù)習(xí)作業(yè)設(shè)計(jì)

  1.填空

  ①已知路程和時間,怎樣求速度?()Ο()=速度

 、谝阎們r和數(shù)量,怎樣求單價?()Ο()=速度

 、垡阎ぷ骺偭亢凸ぷ鲿r間,怎樣求工作效率?()Ο()=速度

  2.預(yù)習(xí)例1觀察下表,思考下列問題:

  一輛汽車行駛的時間和路程如下:

  時間(時)

  1

  2

  3

  4

  5

  6

  ……

  路程

  (千米)

  80

  160

  240

  320

  4000

  480

  ……

 、俦碇杏心膬煞N量?

  ②這兩種量的數(shù)值分別是怎樣變化的?

 、勰惆l(fā)現(xiàn)這兩種量變化有什么規(guī)律嗎?如果看不出規(guī)律的話,可以先寫出幾組相對應(yīng)的路程和時間的比,求出比值,想想有什么規(guī)律。

  學(xué)程設(shè)計(jì)導(dǎo)航策略調(diào)整反思

  一、揭示題課,認(rèn)定目標(biāo)(預(yù)設(shè)2分鐘)我們學(xué)過一些常見的數(shù)量關(guān)系,這節(jié)課我們進(jìn)一步來研究這些數(shù)量關(guān)系中的一些特征。通過學(xué)習(xí)我們要弄清什么樣的兩個量成正比例,怎樣判斷兩種量是否成正比例。

  二、交流合作,提煉建模(預(yù)設(shè)7分鐘)

  1.出示例1小組交流預(yù)習(xí)情況。

  2.全班交流匯報(bào),探究新知:

  ①理解“相關(guān)聯(lián)的量”。

 、谟檬阶颖硎韭烦毯蜁r間的變化規(guī)律。

 、蹖W(xué)生看書、質(zhì)疑。揭示路程和時間是成正比例的量。

  3.根據(jù)板書完整地說一說表中路程和時間成什么關(guān)系。組織全班交流

  1.引導(dǎo)學(xué)生認(rèn)識:時間變化,路程也隨著變化,這樣的兩種量,就叫做兩種相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)實(shí)際生活中,還有哪些相關(guān)聯(lián)的量呢?跟你的同桌說一說。結(jié)合舉例,抓住“隨著”一詞說明:一種量的變化,是因?yàn)橛闪硪环N量的變化引起的,這樣的兩種量才是相關(guān)聯(lián)的量。

  2.引導(dǎo)學(xué)生用式子表示路程和時間的`變化規(guī)律,教師相機(jī)板書:路程/時間=速度(一定)

  3.象這樣的兩種量,它們的關(guān)系叫什么?請同學(xué)們打開課本,自己獲取有關(guān)概念。組織匯報(bào):通過看書,你知道了些什么?還有什么疑問?(老師適時板書)

  4.教師指導(dǎo)學(xué)生完整地說一說表中路程和時間的正比例關(guān)系。

  三、抽象分析,掌握方法(預(yù)設(shè)10分鐘)1.圍繞學(xué)習(xí)菜單完成“試一試”。

  ①獨(dú)立思考。

  ②小組交流。

  2.全班交流匯報(bào)。完整地說說表中總價和數(shù)量成什么關(guān)系。

  3.比較例1與試一試,思考并討論,這兩個題有什么共同點(diǎn)?

  4.如果用字母χ和У分別表示兩種相關(guān)聯(lián)的量,用κ表示它們的比值,用式子怎樣表示正比例關(guān)系?

  5.成正比例的量具備哪兩個條件?1.引導(dǎo)學(xué)生完整地說說表中總價和數(shù)量成什么關(guān)系。

  2.教師相機(jī)板書正比例的關(guān)系式。

  3.引導(dǎo)學(xué)生提煉出成正比例的兩個條件。

  四、分層練習(xí),內(nèi)化提升(預(yù)設(shè)11分鐘)

  1.完成第63頁“練一練”。學(xué)生先獨(dú)立思考并作出判斷,再說出判斷理由。

  2.做練習(xí)十三第1—3題。第1、2題,學(xué)生先算一算,想一想,再交流匯報(bào)。第3題學(xué)生先畫出放大后的圖形,計(jì)算它們的周長和面積,再思考題中的兩個問題。

  3.學(xué)生舉例并說明理由。

  先小組交流,然后全班交流。

  4.判斷并說理。“小張?zhí)叩母叨群退纳砀摺背烧壤?/p>

  1.引導(dǎo)學(xué)生有條理地說明判斷的思考過程。

  2.通過討論使學(xué)生進(jìn)一步明白:只有當(dāng)相關(guān)聯(lián)的量中每一組對應(yīng)數(shù)的比值一定時,這兩種量才成正比例。

  3.生活中哪些量之間存在比例關(guān)系?我們學(xué)過的數(shù)量關(guān)系中,哪些是正比例關(guān)系?下面進(jìn)行一個舉例和說理比賽,各小組至少舉一個正比例關(guān)系的例子,并說明理由。組織學(xué)生“舉例及說理”交流。

  4.老師也舉了一個正比例的例子,請大家和我作一辯論。

  小張?zhí)叩母叨群退纳砀。讓學(xué)生應(yīng)用正比例的意義,嘗試著判斷數(shù)量之間的關(guān)系,是對正比例意義學(xué)習(xí)的強(qiáng)化,還培養(yǎng)了學(xué)生的應(yīng)用意識。

  1.學(xué)生獨(dú)立作業(yè),教師巡視,個別輔導(dǎo)差生。

  2.學(xué)生完成作業(yè)后,反饋矯正。

  3.引導(dǎo)學(xué)生自我評價課堂學(xué)習(xí)表現(xiàn)。

  教學(xué)反思

  我是這樣預(yù)設(shè)的,以例1為導(dǎo)路線,通過說、想、聽等環(huán)節(jié)刺激學(xué)生的感覺器官,“試一試”完全尊重學(xué)生的自主權(quán),根據(jù)學(xué)習(xí)菜單讓學(xué)生獨(dú)立完成,講練結(jié)合,盡量做到老師少講、精講,時間控制在(15分鐘)左右,學(xué)生主栽著整個課堂。蘇霍姆林斯基曾說過:“在人的內(nèi)心深處,都有一種根深蒂固的需要,就是希望感到自己是一個發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界中這種需要特別強(qiáng)烈!鄙贤赀@節(jié)課,我更加深刻的體會到這一點(diǎn):學(xué)習(xí)活動的主體是學(xué)生,開放型的數(shù)學(xué)教師不僅關(guān)注學(xué)生的智慧生命,還關(guān)注學(xué)生的情感價值生命。我深信本節(jié)課的后半部分,通過學(xué)生自己探索、研究、發(fā)現(xiàn)、人人練習(xí)的過程,體驗(yàn)到成功的喜悅。

《正比例》教案10

  教學(xué)內(nèi)容:P62~P63頁的例1及相應(yīng)的“試一試”“練一練”。完成練習(xí)十三第1~3題。

  教學(xué)目標(biāo):

  1.使學(xué)生經(jīng)歷從具體實(shí)例中認(rèn)識成正比例的量的過程,初步理解正比例的意義,學(xué)會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。

  2.讓學(xué)生在認(rèn)識成正比例的量的過程中,初步體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學(xué)模型,進(jìn)一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。

  3.讓學(xué)生進(jìn)一步體會數(shù)學(xué)和日常生活的密切聯(lián)系,增強(qiáng)從生活現(xiàn)象中探索數(shù)學(xué)知識和規(guī)律的意識。

  教學(xué)重難點(diǎn):

  重點(diǎn):結(jié)合實(shí)際情境認(rèn)識成正比例量的特點(diǎn),加深對正比例量的理解。

  難點(diǎn):能跟據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是否成正比例。

  教學(xué)準(zhǔn)備:課件

  課時安排:第一課時

  課前設(shè)計(jì):

  一、導(dǎo)入。

  談話:通過將近六年的數(shù)學(xué)學(xué)習(xí),我們已經(jīng)了解了一些數(shù)量之間的關(guān)系,例如行程問題中速度、時間、路程之間的關(guān)系,你知道這三個量之間的關(guān)系嗎?再如購物問題中單價、數(shù)量、總價之間的關(guān)系,你知道這三個量之間的關(guān)系嗎?這個單元我們要用一種新的觀點(diǎn),更深入地研究數(shù)量之間的關(guān)系,什么觀點(diǎn)呢?事物變化的觀點(diǎn),讓一些量變起來,從變化中發(fā)現(xiàn)規(guī)律。

  二、教學(xué)例1。

  1.出示例1的表格。提問:表中列出了哪兩種量?(板書:時間和路程)觀察表中的數(shù)據(jù),哪一種量的變化引起了另一種量的變化?你是怎么看出來的?

  指名回答。

  談話:時間變化,路程也隨著變化,我們就說,路程和時間是兩種相關(guān)聯(lián)的量。(板書:路程和時間是兩種相關(guān)聯(lián)的量。)“關(guān)聯(lián)”是什么意思?為什么說路程和時間是兩種相關(guān)聯(lián)的量?

  2.我們已經(jīng)知道路程和時間是兩種相關(guān)聯(lián)的`量。還要進(jìn)一步研究,這兩種量的變化有什么規(guī)律?

  3.仔細(xì)觀察表中的數(shù)據(jù),這兩種量在變化中有沒有什么不變的規(guī)律呢?現(xiàn)在小組內(nèi)討論,再在班內(nèi)交流。(有的學(xué)生可能會發(fā)現(xiàn)兩種量中所對應(yīng)的兩個數(shù)的比值不變)

  提問:觀察這些比值,你發(fā)現(xiàn)了什么?這個比值80表示什么?(速度)你能用一個式子來表示上面的規(guī)律嗎?根據(jù)學(xué)生回答,板書:=速度(一定)

  4.講述:通過觀察和計(jì)算,我們對路程和時間的關(guān)系有兩點(diǎn)發(fā)現(xiàn):第一點(diǎn)路程和時間是兩種相關(guān)聯(lián)的量,也就是時間變化,路程也隨著變化;第二點(diǎn)路程和對應(yīng)的時間的比的比值一定(也就是速度一定)。具備了這兩個條件,我們就可以得到結(jié)論:行駛的路程和時間成正比例;行駛的路程和時間成正比例的量。(板書:路程和時間成正比例,路程和時間是成正比例的量)

  5.談話:這就是這節(jié)課我們所學(xué)習(xí)的正比例。(板書課題)請閱讀課本第62頁的一段文字,各自默讀,邊讀邊畫。

  再指名讀。提問:你能讀懂嗎?

  在這題中,哪個量和哪個量是成正比例的量?同桌互相說一說為什么時間和路程是成正比例的量,并在全班交流。

  三、教學(xué)“試一試”

  1.出示“試一試”,學(xué)生自由讀題。

  2.要求學(xué)生根據(jù)已知條件把表格填寫完整。

  3.學(xué)生根據(jù)表中數(shù)據(jù),先嘗試獨(dú)立完成表格。下面的四個問題,然后和同桌交流。

  4.全班交流。板書:總價和數(shù)量是相關(guān)聯(lián)的量,=單價(一定),總價和數(shù)量成正比例。

  5.讓學(xué)生根據(jù)板書完整地說一說鉛筆的總價和數(shù)量成什么關(guān)系。

  四、用含有字母的式子表示正比例關(guān)系。

  1.比較例題和“試一試”的相同點(diǎn)。

  提問:觀察上面的兩個例子,它們有什么相同的地方呢?

  2.談話:如果用字母和分別表示兩種相關(guān)聯(lián)的量,用表示它們的比值,正比例關(guān)系可以用怎樣的式子來表示呢?

  談話:這是正比例關(guān)系式表達(dá)式,對這個式子要這樣理解:和表示兩種相關(guān)聯(lián)的量,比的比值一定,我們就說和成正比例。

  五、鞏固練習(xí)

  1.完成第63頁“練一練”。

  學(xué)生獨(dú)立思考并作出判斷,要用完整的語言說出判斷的理由。

  2.完成補(bǔ)充習(xí)題。

  一輛自行車在公路上行駛,行駛的時間和路程如下表。

  時間/時123456……

  路程/千米355060708590……

  這輛自行車行駛的時間和路程是相關(guān)聯(lián)的量嗎?成正比例嗎?為什么?

  先獨(dú)立思考,再和同桌說一說。

  全班交流,并討論:成正比例的量必須符合哪些條件?

  3.完成練習(xí)十三第1題。

 。1)學(xué)生按題目要求嘗試獨(dú)立完成。

  (2)全班交流,重點(diǎn)讓學(xué)生說說為什么碾米機(jī)的工作時間和碾米數(shù)量成正比例,引導(dǎo)學(xué)生完整地說出判斷的思考過程。

  4.完成練習(xí)十三第2題。

 。1)讓學(xué)生獨(dú)立判斷,并說明理由。

 。2)談話:如果去掉“同一時間”這個前提,物體的高度和影長還成正比例嗎?

  5.完成練習(xí)十三第3題。

  (1)說一說:將圖中的正方形按怎樣的比放大,放大后的正方形的邊長各是幾厘米?

 。2)畫一畫:在書上畫出放大后的圖形。

 。3)算一算:算出每個圖形的周長和面積,并填在表中。

 。4)討論表格下面的兩個問題。談話:兩種量若要成正比例必須是相關(guān)聯(lián)的量,但相關(guān)聯(lián)的量不一定成正比例,只有當(dāng)兩種相關(guān)聯(lián)的量的比值一定時,它們才成正比例。

  六、全課。

  提問:通過這節(jié)課的學(xué)習(xí),你有什么收獲?

  板書設(shè)計(jì)

  認(rèn)識成正比例的量

  時間和路程路程和時間是兩種相關(guān)聯(lián)的量。

 。80=80=80……

 。剿俣龋ㄒ欢ǎ

  路程和時間成正比例,路程和時間是成正比例的量。

  總價和數(shù)量是相關(guān)聯(lián)的量,=單價(一定),總價和數(shù)量成正比例

 。剑ㄒ欢ǎ

《正比例》教案11

  設(shè)計(jì)說明

  本節(jié)課教學(xué)的正比例是數(shù)學(xué)中比較重要的兩個量的關(guān)系,它比較抽象、難理解,是今后學(xué)習(xí)反比例及初中學(xué)習(xí)函數(shù)知識的基礎(chǔ)。結(jié)合本節(jié)課的教學(xué)內(nèi)容及學(xué)情實(shí)際,本節(jié)課在教學(xué)設(shè)計(jì)上主要體現(xiàn)以下幾個方面:

  1.有效利用教材圖表,增強(qiáng)對相關(guān)聯(lián)的量的形象感受。

  教學(xué)伊始,在復(fù)習(xí)鋪墊的基礎(chǔ)上,引導(dǎo)學(xué)生仔細(xì)觀察圖表。在觀察中,使學(xué)生發(fā)現(xiàn)正方形的周長和面積隨著邊長的變化而變化及變化規(guī)律,充分體會到什么是相關(guān)聯(lián)的量,為進(jìn)一步學(xué)習(xí)正比例知識打下基礎(chǔ)。

  2.科學(xué)調(diào)動多種感官,增強(qiáng)對知識形成過程的體驗(yàn)。

  在數(shù)學(xué)教學(xué)過程中,教師如果能夠有效地調(diào)動學(xué)生的多種感官參與學(xué)習(xí)活動,讓學(xué)生利用更多的大腦通路來處理學(xué)習(xí)信息,建立起對知識與技能的'深刻記憶,成為學(xué)習(xí)的主人,就能促進(jìn)學(xué)生提高學(xué)習(xí)效率。本設(shè)計(jì)努力為學(xué)生創(chuàng)設(shè)動眼、動手、動腦、動口的機(jī)會,使學(xué)生在觀察、操作、分析、比較、討論、交流中,不斷探究相關(guān)聯(lián)的兩個量之間的關(guān)系,逐漸發(fā)現(xiàn)其中的規(guī)律,體會正比例的意義。

  3.體會數(shù)學(xué)與生活的密切聯(lián)系,關(guān)注對正比例意義的理解。

  因?yàn)檎壤硎镜氖莾蓚相關(guān)聯(lián)的量之間的關(guān)系,是學(xué)生接下來學(xué)習(xí)反比例及今后進(jìn)一步學(xué)習(xí)函數(shù)知識的重要基礎(chǔ)。所以,本設(shè)計(jì)十分重視學(xué)生對知識的理解。通過創(chuàng)設(shè)具體情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生積極主動地思考并結(jié)合熟悉的情境及數(shù)量關(guān)系理解正比例的意義。

  課前準(zhǔn)備

  教師準(zhǔn)備 多媒體課件

  教學(xué)過程

  第1課時 正比例的認(rèn)識

  ⊙復(fù)習(xí)導(dǎo)入

  1.引導(dǎo)回顧。

  師:什么是相關(guān)聯(lián)的量?請舉例說明。

  (學(xué)生匯報(bào))

  2.導(dǎo)入新課。

  師:兩個相關(guān)聯(lián)的量之間肯定存在著某種關(guān)系,我們今天要學(xué)習(xí)的正比例就是表示兩個相關(guān)聯(lián)的量之間的關(guān)系的,這種關(guān)系是怎樣的呢?讓我們一起進(jìn)入今天的學(xué)習(xí)。

  設(shè)計(jì)意圖:通過回顧舊知,進(jìn)一步理解相關(guān)聯(lián)的量,為在新情境中探究兩個相關(guān)聯(lián)的量之間的變化規(guī)律作鋪墊。

  ⊙探究新知

  1.借助圖表,進(jìn)一步感知相關(guān)聯(lián)的量。

  面積/cm2

  小組合作探究,交流下面的問題:

  (1)上面是正方形周長與邊長、面積與邊長之間的變化情況,把表格填寫完整,并說說你分別發(fā)現(xiàn)了什么。

  (2)同桌合作填表。

  (3)仔細(xì)觀察表格,討論:正方形的周長是怎樣隨著邊長的變化而變化的?正方形的面積是怎樣隨著邊長的變化而變化的?

  預(yù)設(shè)

  生1:我從表中發(fā)現(xiàn)正方形的邊長增加,周長也增加。

  生2:我從表中發(fā)現(xiàn)正方形的邊長擴(kuò)大到原來的幾倍,周長就隨著擴(kuò)大到原來的幾倍。

  生3:我從表中發(fā)現(xiàn)正方形的周長總是邊長的4倍。

  生4:我從表中發(fā)現(xiàn)正方形的邊長增加,面積也增加。

  ……

  (4)比較:正方形的周長與邊長的變化規(guī)律和正方形的面積與邊長的變化規(guī)律有什么異同?

  預(yù)設(shè)

  生1:相同點(diǎn)是都隨著邊長的增加而增加。

  生2:不同點(diǎn)是周長隨邊長變化的規(guī)律與面積隨邊長變化的規(guī)律不同。

  生3:在變化過程中,正方形的周長與邊長的比值一定,都是4。

  生4:在變化過程中,正方形的面積與邊長的比值是一個不確定的值。

《正比例》教案12

  課前準(zhǔn)備

  教師準(zhǔn)備多媒體課件

  教學(xué)過程

  談話導(dǎo)入

  師:誰能用比的知識說一說我們班男女同學(xué)的人數(shù)情況?

  (指名匯報(bào))

  師:今天我們就一起來整理和復(fù)習(xí)比和比例的有關(guān)知識。

  回顧與整理

  1.(1)舉例說一說什么是比,什么是比例,什么是比例尺以及它們的應(yīng)用。

  預(yù)設(shè)

  生1:兩個數(shù)相除又叫作兩個數(shù)的比,如5÷2,可以寫成5∶2。

  生2:表示兩個比相等的式子叫作比例,如8∶4=24∶12。

  生3:圖上距離和實(shí)際距離的比,叫作這幅圖的比例尺,如一幅地圖的比例尺是。比例尺可分為數(shù)值比例尺和線段比例尺。

  生4:配制農(nóng)藥會應(yīng)用到比的知識;地圖上一般都有比例尺。

  ……

  (2)說一說比與比例有什么區(qū)別。

  比

  比例

  各部分名稱

  0.9 ∶ 0.6=1.5

  前項(xiàng)后項(xiàng)比值

  基本性質(zhì)

  比的前項(xiàng)和后項(xiàng)同時乘或除以相同的'數(shù)(0除外),比值不變。

  在比例里,兩個內(nèi)項(xiàng)的積等于兩個外項(xiàng)的積。

  (3)出示教材83頁“回顧與交流”2題。

  學(xué)生獨(dú)立完成,思考比、分?jǐn)?shù)、除法之間的關(guān)系,并全班交流。

  預(yù)設(shè)

  生1:除法算式中的被除數(shù)相當(dāng)于分?jǐn)?shù)的分子,相當(dāng)于比的前項(xiàng);除法算式中的除數(shù)相當(dāng)于分?jǐn)?shù)的分母,相當(dāng)于比的后項(xiàng);除號相當(dāng)于分?jǐn)?shù)的分?jǐn)?shù)線,相當(dāng)于比的比號。

  生2:除法算式的商相當(dāng)于分?jǐn)?shù)的分?jǐn)?shù)值,相當(dāng)于比的比值。

  強(qiáng)調(diào):因?yàn)?不能作除數(shù),所以所有分?jǐn)?shù)的分母及比的后項(xiàng)都不能為0。

《正比例》教案13

  教學(xué)內(nèi)容:

  六年級下冊總復(fù)習(xí)83—85頁《正比例、反比例》。

  教學(xué)目標(biāo):

  (一)知識目標(biāo):

  (1)通過回顧與交流,鼓勵學(xué)生自己獨(dú)立整理知識,形成系統(tǒng)。

  (2)通過具體問題的認(rèn)識進(jìn)一步認(rèn)識正比例、反比例的量。

 。ǘ 數(shù)學(xué)思考與解決問題

  通過復(fù)習(xí)與整理加深對正、反比例意義的理解。并運(yùn)用正、反比例的知識解決一些實(shí)際問題,為以后學(xué)習(xí)函數(shù)打下基礎(chǔ)。

 。ㄈ┣楦袘B(tài)度

  培養(yǎng)學(xué)生認(rèn)真思考的習(xí)慣,學(xué)會區(qū)分正反比例。

  教學(xué)重、難點(diǎn):

 。1)進(jìn)一步認(rèn)識正、反比例的意義,并能運(yùn)用正、反比例的意義解決實(shí)際問題。

 。2)培養(yǎng)學(xué)生的問題意識,不斷積累活動經(jīng)驗(yàn),體會重要的數(shù)學(xué)思想。

  教法學(xué)法

  自主復(fù)習(xí)、小組交流、全班交流、互幫互學(xué)

  教學(xué)準(zhǔn)備

  表格、、小黑板

  教學(xué)過程

  一、情境創(chuàng)設(shè),導(dǎo)入復(fù)習(xí)

  1、判斷下面每題中的兩種量成什么比例關(guān)系?

 、偎俣纫欢,路程和時間( ) ②路程一定,速度和時間( )

 、蹎蝺r一定,總價和數(shù)量( ) ④全校學(xué)生做操,每行站的人數(shù)和站的`行數(shù)( )

  2、根據(jù)條件說出數(shù)學(xué)關(guān)系式,再說出兩種相關(guān)聯(lián)的量成什么比例,并列出相應(yīng)的等式。

 。1)一臺機(jī)床5小時加工40個零件,照這樣計(jì)算,8小時加工64個。

 。2)一列火車從甲地開往乙地,每小時行90千米,要行4小時;每小時行80千米,要行X小時。

  指名學(xué)生口答,老師板書。

  二、回顧整理,構(gòu)建網(wǎng)絡(luò)

 。ㄒ唬┍鹊闹R:

  1. 誰來舉個例子說說什么是比?什么是比例?什么是比的基本性質(zhì)?(引導(dǎo)學(xué)生列舉:“按比例分配”、“比例尺”、“圖形的放大與縮小”等例)

  2. 說一說用比的知識可以解決哪些實(shí)際問題。

  讓學(xué)生體會比在解決實(shí)際問題時的應(yīng)用。

  3. 完成教科書p83“回顧與交流”的3題

  兩人一組,合作完成后,全班交流結(jié)果,讓學(xué)生比較后回答有什么發(fā)現(xiàn)。

 。ǘ┍群头?jǐn)?shù)、除法的聯(lián)系

  出示:a∶b=( )(( ))=( )÷( )(b≠0)教師問:

  1. 你會填寫這個的等式嗎?學(xué)生填好后,再問:

  2. 你的根據(jù)是什么?(比和分?jǐn)?shù)、除法的聯(lián)系)

  3. 那么比和分?jǐn)?shù)、除法的聯(lián)系是什么?它們的區(qū)別呢?

  4. b為什么不能等于0?小組議一議,再交流。

  5. 誰來說說比的基本性質(zhì)與分?jǐn)?shù)的基本性質(zhì)、商不變的規(guī)律?它們有什么聯(lián)系嗎,誰來說說?

 。1)判斷:比的前項(xiàng)和后項(xiàng)都乘或都除以相同的數(shù),比值不變。(讓學(xué)生說說為什么?)

 。2)填空:( )(( ))=( )÷( )=( )∶( )(填好后展示學(xué)生不同的結(jié)果。)

 。ㄈ┍壤叩闹R

  什么是比例尺?

 。ㄋ模┱壤,反比例的知識:

  (1) 小組合作:把有關(guān)正比例反比例的知識在小組內(nèi)進(jìn)行交流,整理成知識網(wǎng)絡(luò)圖。

 。2) 班內(nèi)交流,全班分享

 。3) 全班同學(xué)進(jìn)行優(yōu)化, 形成知識網(wǎng)絡(luò)圖。

  變化的量---正比例(意義、圖象、應(yīng)用)--反比例(意義、圖象、應(yīng)用)---圖形的放縮---比例尺

  三:重點(diǎn)復(fù)習(xí),強(qiáng)化提高:

  1. 一輛汽車在高速路上行駛,速度保持在100千米/時,說一說汽車行駛的路程隨時間變化的情況,并用多種方式表示這兩個量之間的關(guān)系。

 。1)學(xué)生獨(dú)立思考

  (2) 同桌交流

  3)全班交流

  a自然語言 b 列表 c 畫圖 d 關(guān)系式

  2. 舉出生活中正、反比例的例子

  3. 完成課本84頁鞏固與應(yīng)用

  獨(dú)立完成,班內(nèi)交流。

  四.自主檢測,完善提高:

  判斷并說明理由

 。1)出油率一定,香油的質(zhì)量與芝麻的質(zhì)量。

  (2) 一捆100米長的電線,用去的長度與剩下的長度。

 。3) 三角形的面積一定,它的底和高。

 。4) 一個數(shù)與它的倒數(shù)。

  五、完成后班內(nèi)交流,這節(jié)課你有什么收獲?

  板書設(shè)計(jì)

  正比例和反比例

  比 比例、應(yīng)用

  分?jǐn)?shù)、比、除法之間的關(guān)系

  課后反思

  本課時有以下特點(diǎn):

1、抓住復(fù)習(xí)起點(diǎn),以小組合作的形式自主討論復(fù)習(xí),既增強(qiáng)了學(xué)生的主動性和自覺性,也面向全體學(xué)生進(jìn)行查漏補(bǔ)缺。

2、借助表格的方式來整理復(fù)習(xí),更直觀地體會比和比例、正比例和反比例的知識點(diǎn)和不同之處。

3、能整合所有的知識,運(yùn)用多種方法解決簡單的實(shí)際問題,鞏固知識。

《正比例》教案14

  教學(xué)目標(biāo)

  1、使學(xué)生理解正比例的意義.

  2、能根據(jù)正比例的意義判斷兩種量是不是成正比例.

  3、培養(yǎng)學(xué)生的抽象概括能力和分析判斷能力.

  4、使學(xué)生理解正比例的意義.

  教學(xué)難點(diǎn)

  引導(dǎo)學(xué)生通過觀察、思考發(fā)現(xiàn)兩種相關(guān)聯(lián)的量的變化規(guī)律,即它們相對應(yīng)的數(shù)的比值一定,從而概括出正比例關(guān)系的概念.

  教學(xué)過程

  一、復(fù)習(xí)

  出示下面的題目,讓學(xué)生回答..已知路程和時間,怎樣求速度?板書: =速度

  2.已知總價和數(shù)量,怎樣求單價?板書:=單價

  3.已知工作總量和工作時間,怎樣求工作效率?板書:=工作效率

  4.已知總產(chǎn)量和公頃數(shù),怎樣求公頃產(chǎn)量?板書:=公頃產(chǎn)量

  二、導(dǎo)入新課

  教師:這是我們過去學(xué)過的一些常見的數(shù)量關(guān)系.這節(jié)課我們進(jìn)一步來研究這些數(shù)量關(guān)系中的一些特征,首先來研究這些數(shù)量之間的正比例關(guān)系.(板書課題:正比例的意義.)

  三、新課

  1、教學(xué)例1.

  用小黑板出示例1:一列火車行駛的時間和所行的路程如下表;

  時間(時) 1 2 3 4 5 6 7 8

  路程(千米) 90 180 270 360 450 540 630 720

  提問:

  表中有哪幾種量?

  當(dāng)時間是1小時時,路程是多少?當(dāng)時間是2小時時,路程又是多少?

  這說明時間這種量變化了,路程這種量怎么樣了?(也變化了.)

  教師說明:像這樣,一種量變化,另一種量也隨著變化,我們就說這兩種量是兩種相關(guān)聯(lián)的量(板書:兩種相關(guān)聯(lián)的量).

  時間和路程是兩種相關(guān)聯(lián)的量,路程是怎樣隨著時間變化而變化的呢?

  讓每一小組(8個小組)的同學(xué)選一組相對應(yīng)的數(shù)據(jù),計(jì)算出它們的比值.教師板書出來:=90,=90,=90,=90,

  讓學(xué)生觀察這些比和它們的比值,看有什么規(guī)律.教師板書:相對應(yīng)的兩個數(shù)的比值(也就是商)一定.

  比值90,實(shí)際上是火車的什么?你能將這些式子所表示的意義寫成一個關(guān)系式嗎?板書:=速度(一定)

  教師小結(jié):通過剛才的觀察和分析,我們知道路程和時間是兩種什么樣的量?(兩種相關(guān)聯(lián)的量.)路程和時間這兩種量的.變化規(guī)律是什么呢?〔路程和時間的比的比值(速度)總是一定的.〕

  2、教學(xué)例2.

  出示例2:在布店的柜臺上,有像下面一張寫著某種花布的米數(shù)和總價的表.

  數(shù)量(米) 1 2 3 4 5 6 7

  總價(元) 8。2 16。4 24。6 32。8 41。0 49。2 57。4

  讓學(xué)生觀察上表,并回答下面的問題:

  (1)表中有哪兩種量?

  (2)米數(shù)擴(kuò)大,總價怎樣?米數(shù)縮小,總價怎樣?

  (3)相對應(yīng)的總價和米數(shù)的比各是多少?比值是多少?

  然后進(jìn)一步問:

  這個比值實(shí)際上是什么?你能用一個關(guān)系式表示它們的關(guān)系嗎?板書:=單價(一定)

  教師小結(jié):通過剛才的思考和分析,我們知道總價和米數(shù)也是兩種相關(guān)聯(lián)的量,總價是隨著米數(shù)的變化而變化的,米數(shù)擴(kuò)大,總價隨著擴(kuò)大;米數(shù)縮小,總價也隨著縮。鼈償U(kuò)大、縮小的規(guī)律是:總價和米數(shù)的比的比值總是一定的.

  3、抽象概括正比例的意義.

  教師:請同學(xué)們比較一下剛才這兩個例題,回答下面的問題:

  (1)都有幾種量?

  (2)這兩種量有沒有關(guān)系?

  (3)這兩種量的比值都是怎樣的?

  教師小結(jié):通過比較,我們看出上面兩個例題,有一些共同特點(diǎn):都有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,并且這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定.像這樣的兩種量我們就把它們叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系.

  最后教師提出:如果我們用字母x,y表示兩種相關(guān)聯(lián)的量,用字母k表示它們的比值,你能將正比例關(guān)系用字母表示出來嗎?教師板書

  4、教學(xué)例3.

  出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

  教師引導(dǎo):

  面粉的總重量和袋數(shù)是不是相關(guān)聯(lián)的量?

  面粉的總重量和袋數(shù)有什么關(guān)系?它們的比的比值是什么?這個比值是否一定?板書:=每袋面粉的重量(一定)

  已知每袋面粉的重量一定,就是面粉的總重量和袋數(shù)的比的比值是一定的,所以面粉的總重量和袋數(shù)成正比例.

  5、鞏固練習(xí).

  讓學(xué)生試做第13頁做一做中的題目.其中(3)要求學(xué)生說明這個比值所表示的意義,學(xué)生說成是生產(chǎn)效率和每天生產(chǎn)的噸數(shù)都可以

  四、課堂練習(xí)

《正比例》教案15

  正比例和反比例是在同學(xué)學(xué)習(xí)了比和比例的基礎(chǔ)上進(jìn)行教學(xué)的,主要讓同學(xué)結(jié)合實(shí)際情境認(rèn)識成正比例和反比例的量。知識與技能方面的教學(xué)目標(biāo)是:經(jīng)歷從具體實(shí)例中認(rèn)識成正比例和反比例的量的過程,理解正比例、反比例的意義,學(xué)會判斷兩種相關(guān)聯(lián)的量是否成正比例或反比例。正比例、反比例都是表示兩個相關(guān)聯(lián)的變量之間關(guān)系的一種數(shù)學(xué)模型,都是在一定的條件下,一種量隨著另一種量的變化而變化。本單元的教材分“成正比例的量”和“咸反比例的量”兩個局部,先教學(xué)正比例的認(rèn)識,再教學(xué)反比例的認(rèn)識。在同一節(jié)課里引導(dǎo)同學(xué)探索兩種量在變化過程中存在的規(guī)律,并用關(guān)系式表示出規(guī)律,有助于同學(xué)掌握正比例、反比例概念的實(shí)質(zhì),因此我們抓住知識的內(nèi)聯(lián)與實(shí)質(zhì)規(guī)律,重組正比例、反比例教學(xué):把認(rèn)識成正比例的量和認(rèn)識成反比例的量的兩個例題整合起來,布置在一節(jié)課里進(jìn)行教學(xué),讓同學(xué)在同一實(shí)例的情境中,感悟、體會并理解正比例、反比例的意義。

  重組教材,創(chuàng)編文本。將教材中的例1(結(jié)合生活中的實(shí)例認(rèn)識成正比例的量)和例3(結(jié)合生活中的實(shí)例認(rèn)識成反比例的量)整合成同一問題情境下有前后聯(lián)系的兩道例題:保存原教材中的例1,引導(dǎo)同學(xué)認(rèn)識成正比例的量;根據(jù)例1的情境,創(chuàng)編新的例2,替代原教材中的例3,引導(dǎo)同學(xué)認(rèn)識成反比例的量。將教材中的例2(認(rèn)識正比例圖像)放到認(rèn)識正比例、反比例之后進(jìn)行教學(xué)。

  抓住實(shí)質(zhì),內(nèi)聯(lián)教學(xué)。成正比例的量的實(shí)質(zhì)規(guī)律是“比值一定”,成反比例的量的實(shí)質(zhì)規(guī)律是“積一定”,引導(dǎo)同學(xué)探究發(fā)現(xiàn)這兩種實(shí)質(zhì)規(guī)律是教學(xué)的主要任務(wù),教學(xué)時應(yīng)掌握好這一點(diǎn)。本設(shè)計(jì)將例1和例2整合到同一情境下,從同學(xué)熟悉的時間、速度和路程這三個量之間的關(guān)系動身,引導(dǎo)同學(xué)對比研究,在觀察、討論交流中發(fā)現(xiàn):①例1和例2中的兩種量都是相關(guān)聯(lián)的量,都是在一定的條件下,一種量隨著另一種量的.變化而變化。②例1中兩種相關(guān)聯(lián)的量的變化方向是相同的,一種量擴(kuò)大(或縮小),另一種量也隨著擴(kuò)大(或縮小);例2中兩種相關(guān)聯(lián)的量的變化方向是相反的,一種量擴(kuò)大,另一種量反而縮小。③例1中擴(kuò)大、縮小的規(guī)律是“比值一定”,例2擴(kuò)大、縮小的規(guī)律是“積一定”。這樣抓住正比例、反比例的實(shí)質(zhì)和聯(lián)系進(jìn)行教學(xué),有助于同學(xué)加深對正比例、反比例意義的理解,從整體上掌握各種量之間的比例關(guān)系。

  對比練習(xí),溝通聯(lián)系。同學(xué)對成正比例的量和成反比例的量有了一定的認(rèn)識后,還需要一定的練習(xí)。為了協(xié)助同學(xué)逐步提高判斷成正比例、反比例的量的能力,本設(shè)計(jì)中的練習(xí)分三個層次:一是判斷咸正比例的量的練習(xí);二是判斷成反比例的量的練習(xí);三是正比例、反比例對比練習(xí),成比例的量與不成比例的量的對比練習(xí)。比較和辨析,有助于同學(xué)更好地掌握正比例、反比例概念的實(shí)質(zhì)

【《正比例》教案】相關(guān)文章:

「教案」正比例教案12-16

正比例教案12-16

正比例函數(shù)教案12-17

《正比例的意義》教案12-16

《正比例函數(shù)》教案設(shè)計(jì)10-04

正比例的意義教案設(shè)計(jì)12-16

《成正比例的量》教案設(shè)計(jì)10-02

數(shù)學(xué)教案-成正比例的量09-29

《成正比例的量》優(yōu)秀教案設(shè)計(jì)10-01