中文国产日韩欧美视频,午夜精品999,色综合天天综合网国产成人网,色综合视频一区二区观看,国产高清在线精品,伊人色播,色综合久久天天综合观看

等差數(shù)列求和公式教學反思

時間:2023-03-23 14:28:08 教學反思 我要投稿
  • 相關推薦

等差數(shù)列求和公式教學反思

  作為一位優(yōu)秀的老師,我們要有很強的課堂教學能力,寫教學反思能總結教學過程中的很多講課技巧,那么你有了解過教學反思嗎?下面是小編整理的等差數(shù)列求和公式教學反思,僅供參考,大家一起來看看吧。

等差數(shù)列求和公式教學反思

等差數(shù)列求和公式教學反思1

  在高一(5)班上好“等差數(shù)列求和公式”這一堂課后,通過和學生的互動,我對求和公式上課時遇到的幾點問題提出了一點思考:

  一、對內(nèi)容的理解及相應的教學設計

  1、“數(shù)列前n項的和”是針對一般數(shù)列而提出的一個概念,教材在這里提出這個概念只是因為本節(jié)內(nèi)容首次研究數(shù)列前n項和的問題。因此,教學設計時應注意“從等差數(shù)列中跳出來”學習這個概念,以免學生誤認為這只是等差數(shù)列的一個概念。

  2、等差數(shù)列求和公式的教學重點是公式的推導過程,從“掌握公式”來解釋,應該使學生會推導公式、理解公式和運用公式解決問題。其實還不止這些,讓學生體驗推導過程中所包含的數(shù)學思想方法才是更高境界的教學追求,這一點后面再作展開。本節(jié)課在這方面有設計、有突破,但教師組織學生討論與交流的環(huán)節(jié)似乎還不夠充分,因為這個層面上的學習更側重于讓學生“悟”。

  3、用公式解決問題的內(nèi)容很豐富。本節(jié)課只考慮“已知等差數(shù)列,求前n項”的問題,使課堂不被大量的變式問題所困擾,而能專心將教學的重點放在公式的推導過程。這樣的處理比較恰當。

  二、求和公式中的數(shù)學思想方法

  在推導等差數(shù)列求和公式的過程中,有兩種極其重要的數(shù)學思想方法。一種是從特殊到一般的探究思想方法,另一種是從一般到特殊的化歸思想方法。

  從特殊到一般的探究思想方法大家都很熟悉,本節(jié)課基本按教材的設計,依次解決幾個問題。

  從一般到特殊的化歸思想方法的揭示是本節(jié)課的最大成功之處。以往人們常常只注意到“倒序相加”是推導等差數(shù)列求和公式的關鍵,而忽視了對為什么要這樣做的思考。同樣是求和,與的本質區(qū)別是什么?事實上,前者是100個不相同的數(shù)求和,后者是50個相同數(shù)的求和,求和的本質區(qū)別并不在于是100個還是50個,而在于“相同的數(shù)”與“不相同的數(shù)”。相同的數(shù)求和是一個極其簡單并且在乘法中早已解決了的問題,將不“相同的數(shù)求和”(一般)化歸為“相同數(shù)的求和”(特殊),這就是推導等差數(shù)列求和公式的思想精髓。不僅如此,將一般的求和問題化歸為我們會求(特殊)的'求和問題這種思想還將在以后的求和問題中反復體現(xiàn)。

  在等差數(shù)列求和公式的推導過程中,其實有這樣一個問題鏈:

  為什么要對和式分組配對?(因為想轉化為相同數(shù)求和)

  為什么要“倒序相加”?(因為可以避免項數(shù)奇偶性討論)

  為什么“倒序相加”能轉化為相同數(shù)求和?(因為等差數(shù)列性質)

  由此可見,“倒序相加”只是一種手段和技巧,轉化為相同數(shù)求和是解決問題的思想,等差數(shù)列自身的性質是所采取的手段能達到目的的根本原因。

  三、幾點看法

  1、注意挖掘基礎知識的教學內(nèi)涵

  對待概念、公式等內(nèi)容,如果只停留在知識自身層面,那么教學常常會落入死記硬背境地。其實越是基礎的東西其所包含的思想方法往往越深刻,值得大家?guī)ьI學生去認真體驗,當然這樣的課不好上。

  2、用好教材

  現(xiàn)在的教材有不少好的教學設計,需要教師認真對待,反復領會教材的意圖。當然,由于教材的客觀局限性,還需要教師去處理教材。譬如本節(jié)課,課堂所呈現(xiàn)的基本上是教材的內(nèi)容順序和教學設計,但面對教材所給的全部內(nèi)容時,課堂能否在某個環(huán)節(jié)上停下來,能否合理地選取教材的一部分內(nèi)容作為這一節(jié)課的內(nèi)容,而將其他的內(nèi)容留到后面的課,這就體現(xiàn)教師的認識和處理教材的水平。

  3、學無止境

  一堂課所要追求的教學價值當然是盡量能多一些更好,但應分清主次。譬如本節(jié)課還用了幾個“實際生活問題”,意圖是明顯的,教師的提問和處理也比較恰當。課沒有最好只有更好!

等差數(shù)列求和公式教學反思2

  在高一(5)班上好“等差數(shù)列求和公式”這一堂課后,通過和學生的互動,我對求和公式上課時遇到的幾點問題提出了一點思考.

  一、對內(nèi)容的理解及相應的教學設計

  1.“數(shù)列前n項的和”是針對一般數(shù)列而提出的一個概念,教材在這里提出這個概念只是因為本節(jié)內(nèi)容首次研究數(shù)列前n項和的問題.因此,教學設計時應注意“從等差數(shù)列中跳出來”學習這個概念,以免學生誤認為這只是等差數(shù)列的一個概念.

  2.等差數(shù)列求和公式的教學重點是公式的推導過程,從“掌握公式”來解釋,應該使學生會推導公式、理解公式和運用公式解決問題.其實還不止這些,讓學生體驗推導過程中所包含的數(shù)學思想方法才是更高境界的教學追求,這一點后面再作展開.本節(jié)課在這方面有設計、有突破,但教師組織學生討論與交流的環(huán)節(jié)似乎還不夠充分,因為這個層面上的學習更側重于讓學生“悟”.

  3.用公式解決問題的內(nèi)容很豐富.本節(jié)課只考慮“已知等差數(shù)列,求前n項”的問題,使課堂不被大量的變式問題所困擾,而能專心將教學的重點放在公式的推導過程.這樣的處理比較恰當.

  二、求和公式中的數(shù)學思想方法

  在推導等差數(shù)列求和公式的過程中,有兩種極其重要的'數(shù)學思想方法.一種是從特殊到一般的探究思想方法,另一種是從一般到特殊的化歸思想方法.

  從特殊到一般的探究思想方法大家都很熟悉,本節(jié)課基本按教材的設計,依次解決幾個問題。

  從一般到特殊的化歸思想方法的揭示是本節(jié)課的最大成功之處.以往人們常常只注意到“倒序相加”是推導等差數(shù)列求和公式的關鍵,而忽視了對為什么要這樣做的思考.同樣是求和,與的本質區(qū)別是什么?事實上,前者是100個不相同的數(shù)求和,后者是50個相同數(shù)的求和,求和的本質區(qū)別并不在于是100個還是50個,而在于“相同的數(shù)”與“不相同的數(shù)”.相同的數(shù)求和是一個極其簡單并且在乘法中早已解決了的問題,將不“相同的數(shù)求和”(一般)化歸為“相同數(shù)的求和”(特殊),這就是推導等差數(shù)列求和公式的思想精髓.不僅如此,將一般的求和問題化歸為我們會求(特殊)的求和問題這種思想還將在以后的求和問題中反復體現(xiàn).

  在等差數(shù)列求和公式的推導過程中,其實有這樣一個問題鏈:

  為什么要對和式分組配對?(因為想轉化為相同數(shù)求和)

  為什么要“倒序相加”?(因為可以避免項數(shù)奇偶性討論)

  為什么“倒序相加”能轉化為相同數(shù)求和?(因為等差數(shù)列性質)

  由此可見,“倒序相加”只是一種手段和技巧,轉化為相同數(shù)求和是解決問題的思想,等差數(shù)列自身的性質是所采取的手段能達到目的的根本原因.

  三、幾點看法

  1.注意挖掘基礎知識的教學內(nèi)涵

  對待概念、公式等內(nèi)容,如果只停留在知識自身層面,那么教學常常會落入死記硬背境地.其實越是基礎的東西其所包含的思想方法往往越深刻,值得大家?guī)ьI學生去認真體驗,當然這樣的課不好上.

  2.用好教材

  現(xiàn)在的教材有不少好的教學設計,需要教師認真對待,反復領會教材的意圖.當然,由于教材的客觀局限性,還需要教師去處理教材.譬如本節(jié)課,課堂所呈現(xiàn)的基本上是教材的內(nèi)容順序和教學設計,但面對教材所給的全部內(nèi)容時,課堂能否在某個環(huán)節(jié)上停下來,能否合理地選取教材的一部分內(nèi)容作為這一節(jié)課的內(nèi)容,而將其他的內(nèi)容留到后面的課,這就體現(xiàn)教師的認識和處理教材的水平.

  3.無止境

  一堂課所要追求的教學價值當然是盡量能多一些更好,但應分清主次.譬如本節(jié)課還用了幾個“實際生活問題”,意圖是明顯的,教師的提問和處理也比較恰當.課沒有最好只有更好!

【等差數(shù)列求和公式教學反思】相關文章:

等差數(shù)列求和方法總結12-09

數(shù)列求和的教學反思09-21

數(shù)列求和教學反思04-14

等差數(shù)列教學反思04-14

《乘法公式》教學反思04-02

等比數(shù)列求和公式推導過程08-08

等差數(shù)列的教學反思范文09-19

數(shù)列求和復習教學反思(精選17篇)03-27

《乘法公式》教學反思范文10-05