精選八年級(jí)數(shù)學(xué)教案八篇
作為一名教學(xué)工作者,編寫(xiě)教案是必不可少的,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。我們?cè)撛趺慈?xiě)教案呢?以下是小編幫大家整理的八年級(jí)數(shù)學(xué)教案8篇,希望能夠幫助到大家。
八年級(jí)數(shù)學(xué)教案 篇1
一、教學(xué)目標(biāo)
1.靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題.
2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí).
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題.
2.難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問(wèn)題.
3.難點(diǎn)的突破方法:
三、課堂引入
創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法.
四、例習(xí)題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
、埔李}意畫(huà)出圖形;
、且李}意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;
、纫?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;
、伞螾RS=∠QPR—∠QPS=45°.
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí).
例2(補(bǔ)充)一根30米長(zhǎng)的細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長(zhǎng)度比較短邊長(zhǎng)7米,比較長(zhǎng)邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀.
分析:⑴若判斷三角形的形狀,先求三角形的三邊長(zhǎng);
、圃O(shè)未知數(shù)列方程,求出三角形的三邊長(zhǎng)5、12、13;
⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.
解略.
本題幫助培養(yǎng)學(xué)生利用方程思想解決問(wèn)題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識(shí).
八年級(jí)數(shù)學(xué)教案 篇2
單元(章)主題第三章 直棱柱任課教師與班級(jí)
本課(節(jié))課題3.1 認(rèn)識(shí)直棱柱第 1 課時(shí) / 共 課時(shí)
教學(xué)目標(biāo)(含重點(diǎn)、難點(diǎn))及
設(shè)置依據(jù)教學(xué)目標(biāo)
1、了解多面體、直棱柱的有關(guān)概念.
2、會(huì)認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.
3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長(zhǎng)方形(含正方形)等特征.
教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):直棱柱的有關(guān)概念.
教學(xué)難點(diǎn):本節(jié)的例題描述一個(gè)物體的形狀,把它看成怎樣的兩個(gè)幾何體的組合,都需要一定的空間想象能力和表達(dá)能力.
教學(xué)準(zhǔn)備每個(gè)學(xué)生準(zhǔn)備一個(gè)幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長(zhǎng)方體、立方體模型
教 學(xué) 過(guò) 程
內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡(jiǎn)明設(shè)計(jì)意圖二度備課(即時(shí)反思與糾正)
一、創(chuàng)設(shè)情景,引入新課
師:在現(xiàn)實(shí)生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒(méi)有這樣類似的立體圖形呢?
析:學(xué)生很容易回答出更多的答案。
師:(繼續(xù)補(bǔ)充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國(guó)的迪思尼樂(lè)園、德國(guó)的古堡風(fēng)光,中國(guó)北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
二、合作交流,探求新知
1.多面體、棱、頂點(diǎn)概念:
師:(出示長(zhǎng)方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個(gè)平面圍成的?都有什么相同特點(diǎn)?
析:一個(gè)同學(xué)回答,然后小結(jié)概念:由若干個(gè)平面圍成的幾何體,叫做多面體。多面體上相鄰兩個(gè)面之間的交線叫做多面體的棱,幾個(gè)面的公共頂點(diǎn)叫做多面體的頂點(diǎn)
2.合作交流
師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。
學(xué)生活動(dòng):(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語(yǔ)言描
述其特征。)
師:同學(xué)們?cè)儆懻撘幌拢芊癜炎约旱恼Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言。
學(xué)生活動(dòng):分小組討論。
說(shuō)明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動(dòng)探究中發(fā)現(xiàn)知識(shí),充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。
師:請(qǐng)大家找出與長(zhǎng)方體,立方體類似的物體或模型。
析:舉出實(shí)例。(找出區(qū)別)
師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長(zhǎng)方形含正方形。
長(zhǎng)方體和正方體都是直四棱柱。
3.反饋鞏固
完成“做一做”
析:由第(3)小題可以得到:
直棱柱的相鄰兩條側(cè)棱互相平行且相等。
4.學(xué)以至用
出示例題。(先請(qǐng)學(xué)生單獨(dú)考慮,再作講解)
析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的創(chuàng)造性思維習(xí)慣)
最后完成例題中的“想一想”
5.鞏固練習(xí)(學(xué)生練習(xí))
完成“課內(nèi)練習(xí)”
三、小結(jié)回顧,反思提高
師:我們這節(jié)課的重點(diǎn)是什么?哪些地方比較難學(xué)呢?
合作交流后得到:重點(diǎn)直棱柱的有關(guān)概念。
直棱柱有以下特征:
有上、下兩個(gè)底面,底面是平面圖形中的多邊形,而且彼此全等;
側(cè)面都是長(zhǎng)方形含正方形。
例題中的把首飾盒看成是由兩個(gè)直三棱柱、直四棱柱的'組合,或著是兩個(gè)直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點(diǎn)比較難。
板書(shū)設(shè)計(jì)
作業(yè)布置或設(shè)計(jì)作業(yè)本及課時(shí)特訓(xùn)
八年級(jí)數(shù)學(xué)教案 篇3
復(fù)習(xí)第一步::
勾股定理的有關(guān)計(jì)算
例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個(gè)正方形,則此正方形的面積為.
析解:圖中陰影是一個(gè)正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長(zhǎng)平方為:172-152=64,故正方形面積為6
勾股定理解實(shí)際問(wèn)題
例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時(shí)的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場(chǎng)上,旗桿旗頂?shù)降孛娴母叨葹?20cm.在無(wú)風(fēng)的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時(shí)最低處離地面的最小高度h.
析解:彩旗自然下垂的長(zhǎng)度就是矩形DCEF
的對(duì)角線DE的長(zhǎng)度,連接DE,在Rt△DEF中,根據(jù)勾股定理,
得DE=h=220-150=70(cm)
所以彩旗下垂時(shí)的最低處離地面的最小高度h為70cm
與展開(kāi)圖有關(guān)的計(jì)算
例3、(20xx年青島市中考試題)如圖,在棱長(zhǎng)為1的正方體ABCD—A’B’C’D’的表面上,求從頂點(diǎn)A到頂點(diǎn)C’的最短距離.
析解:正方體是由平面圖形折疊而成,反之,一個(gè)正方體也可以把它展開(kāi)成平面圖形,如圖是正方體展開(kāi)成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點(diǎn)A到點(diǎn)C’的最短距離.而在正方體中,線段AC’變成了折線,但長(zhǎng)度沒(méi)有改變,所以頂點(diǎn)A到頂點(diǎn)C’的最短距離就是在圖2中線段AC’的長(zhǎng)度.
在矩形ACC’A’中,因?yàn)锳C=2,CC’=1
所以由勾股定理得AC’=.
∴從頂點(diǎn)A到頂點(diǎn)C’的最短距離為
復(fù)習(xí)第二步:
1.易錯(cuò)點(diǎn):本節(jié)同學(xué)們的易錯(cuò)點(diǎn)是:在用勾股定理求第三邊時(shí),分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯(cuò)誤的出現(xiàn),在解題中,同學(xué)們一定要找準(zhǔn)直角邊和斜邊,同時(shí)要弄清楚解題中的三角形是否為直角三角形.
例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長(zhǎng)c.
錯(cuò)解:因?yàn)閍=6,b=10,根據(jù)勾股定理得c=剖析:上面解法,由于審題不仔細(xì),忽視了∠B=90°,這一條件而導(dǎo)致沒(méi)有分清直角三角形的斜邊和直角邊,錯(cuò)把c當(dāng)成了斜邊.
正解:因?yàn)閍=6,b=10,根據(jù)勾股定理得,c=溫馨提示:運(yùn)用勾股定理時(shí),一定分清斜邊和直角邊,不能機(jī)械套用c2=a2+b2
例5:已知一個(gè)Rt△ABC的兩邊長(zhǎng)分別為3和4,則第三邊長(zhǎng)的平方是
錯(cuò)解:因?yàn)镽t△ABC的兩邊長(zhǎng)分別為3和4,根據(jù)勾股定理得:第三邊長(zhǎng)的平方是32+42=25
剖析:此題并沒(méi)有告訴我們已知的邊長(zhǎng)4一定是直角邊,而4有可能是斜邊,因此要分類討論.
正解:當(dāng)4為直角邊時(shí),根據(jù)勾股定理第三邊長(zhǎng)的平方是25;當(dāng)4為斜邊時(shí),第三邊長(zhǎng)的平方為:42-32=7,因此第三邊長(zhǎng)的平方為:25或7.
溫馨提示:在用勾股定理時(shí),當(dāng)斜邊沒(méi)有確定時(shí),應(yīng)進(jìn)行分類討論.
例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數(shù),則c=.
錯(cuò)解:由勾股定理得c=剖析:此題并沒(méi)有告訴你⊿ABC為直角三角形
八年級(jí)數(shù)學(xué)教案 篇4
一、教學(xué)目標(biāo):
1、知識(shí)目標(biāo):能熟練掌握簡(jiǎn)單圖形的移動(dòng)規(guī)律,能按要求作出簡(jiǎn)單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;
2、能力目標(biāo):①,在實(shí)踐操作過(guò)程中,逐步探索圖形之間的平移關(guān)系;
、冢瑢(duì)組合圖形要找到一個(gè)或者幾個(gè)“基本圖案”,并能通過(guò)對(duì)“基本圖案”的平移,復(fù)制所求的圖形;
3、情感目標(biāo):經(jīng)歷對(duì)圖形進(jìn)行觀察、分析、欣賞和動(dòng)手操作、畫(huà)圖等過(guò)程,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí)。
二、重點(diǎn)與難點(diǎn):
重點(diǎn):圖形連續(xù)變化的特點(diǎn);
難點(diǎn):圖形的劃分。
三、教學(xué)方法:
講練結(jié)合。使用多媒體課件輔助教學(xué)。
八年級(jí)數(shù)學(xué)上冊(cè)教案四、教具準(zhǔn)備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學(xué)設(shè)計(jì):
教師活動(dòng)
學(xué)生活動(dòng)
設(shè)計(jì)意圖
創(chuàng)設(shè)情景,探究新知:
(演示課件):教材上小狗的圖案。提問(wèn):(1)這個(gè)圖案有什么特點(diǎn)?(2)它可以通過(guò)什么“基本圖案”,經(jīng)過(guò)怎樣的平移而形成?(3)在平移過(guò)程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對(duì)每種答案都要肯定。
看磁性黑板,展示教材64頁(yè)圖3-9,提問(wèn):左圖是一個(gè)正六邊形,它經(jīng)過(guò)怎樣的平移能得到右圖?誰(shuí)到黑板做做看?
展示教材64頁(yè)3-10,提問(wèn):左圖是一種“工”字形磚,右圖是怎樣通過(guò)左圖得到的?
小組討論,派代表到臺(tái)上給大家講解。
氣氛要熱烈,充分調(diào)動(dòng)學(xué)生的積極性,發(fā)掘他們的想象力。
(演示課件)教材65頁(yè)圖3-11,提問(wèn):這個(gè)圖可以看做是什么“基本圖案”通過(guò)平移得到的?
暢所欲言,互相補(bǔ)充。
課堂小結(jié):
在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。
課堂練習(xí):
(演示課件)教材65頁(yè)“隨堂練習(xí)”。
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對(duì)于每種答案,教師都要給予充分的肯定。
六、教學(xué)反思:
本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識(shí)較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過(guò)程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。
八年級(jí)數(shù)學(xué)教案 篇5
一、課堂引入
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質(zhì)?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
4.事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來(lái)兩根長(zhǎng)度相等的短木條和兩根長(zhǎng)度相等的長(zhǎng)木條制作,你有什么辦法可以檢測(cè)他做的是矩形像框嗎?看看誰(shuí)的方法可行?
通過(guò)討論得到矩形的判定方法.
矩形判定方法1:對(duì)角錢相等的平行四邊形是矩形.
矩形判定方法2:有三個(gè)角是直角的四邊形是矩形.
。ㄖ赋觯号卸ㄒ粋(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了.因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角.)
二、例習(xí)題分析
例1(補(bǔ)充)下列各句判定矩形的說(shuō)法是否正確?為什么?
(1)有一個(gè)角是直角的四邊形是矩形;(×)
。2)有四個(gè)角是直角的四邊形是矩形;(√)
(3)四個(gè)角都相等的四邊形是矩形;(√)
。4)對(duì)角線相等的四邊形是矩形;(×)
。5)對(duì)角線相等且互相垂直的四邊形是矩形;(×)
。6)對(duì)角線互相平分且相等的四邊形是矩形;(√)
。7)對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形;(×)
。8)一組鄰邊垂直,一組對(duì)邊平行且相等的四邊形是矩形;(√)
。9)兩組對(duì)邊分別平行,且對(duì)角線相等的四邊形是矩形.(√)
指出:
。╨)所給四邊形添加的條件不滿足三個(gè)的肯定不是矩形;
(2)所給四邊形添加的條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.
例2(補(bǔ)充)已知ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△AOB是等邊三角形,AB=4cm,求這個(gè)平行四邊形的面積.
分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對(duì)角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計(jì)算邊長(zhǎng),從而得到面積值.
解:∵ 四邊形ABCD是平行四邊形,
∴AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(對(duì)角線相等的平行四邊形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴BC=(cm).
例3(補(bǔ)充)已知:如圖(1),ABCD的四個(gè)內(nèi)角的平分線分別相交于點(diǎn)E,F(xiàn),G,H.求證:四邊形EFGH是矩形.
分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個(gè)角是直角的四邊形是矩形”來(lái)證明
八年級(jí)數(shù)學(xué)教案 篇6
一、教學(xué)目標(biāo)
。ㄒ唬、知識(shí)與技能:
。1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
。2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
(二)、過(guò)程與方法:
(1)由學(xué)生自主探索解題途徑,在此過(guò)程中,通過(guò)觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。
。2)由整式乘法的逆運(yùn)算過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
(3)通過(guò)對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問(wèn)題能力與綜合應(yīng)用能力。
。ㄈ、情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):因式分解的概念及提公因式法。
難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學(xué)過(guò)程
教學(xué)環(huán)節(jié):
活動(dòng)1:復(fù)習(xí)引入
看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ;
。2)-2.67×132+25×2.67+7×2.67= ;
。3)992–1= 。
設(shè)計(jì)意圖:
如果說(shuō)學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過(guò)回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過(guò)類比很自然地過(guò)渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階.
注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過(guò)的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
活動(dòng)2:導(dǎo)入課題
P165的探究(略);
2. 看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?
設(shè)計(jì)意圖:
引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。
活動(dòng)3:探究新知
看誰(shuí)算得準(zhǔn):
計(jì)算下列式子:
。1)3x(x-1)= ;
。2)(a+b+c)= ;
(3)(+4)(-4)= ;
。4)(-3)2= ;
。5)a(a+1)(a-1)= ;
根據(jù)上面的算式填空:
。1)a+b+c= ;
。2)3x2-3x= ;
(3)2-16= ;
。4)a3-a= ;
。5)2-6+9= 。
在第一組的整式乘法的計(jì)算上,學(xué)生通過(guò)對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過(guò)對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動(dòng)4:歸納、得出新知
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
八年級(jí)數(shù)學(xué)教案 篇7
第一步:情景創(chuàng)設(shè)
乒乓球的標(biāo)準(zhǔn)直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對(duì)這些乒乓球的直徑了進(jìn)行檢測(cè)。結(jié)果如下(單位:mm):
A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你認(rèn)為哪廠生產(chǎn)的乒乓球的直徑與標(biāo)準(zhǔn)的誤差更小呢?
。1)請(qǐng)你算一算它們的平均數(shù)和極差。
(2)是否由此就斷定兩廠生產(chǎn)的乒乓球直徑同樣標(biāo)準(zhǔn)?
今天我們一起來(lái)探索這個(gè)問(wèn)題。
探索活動(dòng)
通過(guò)計(jì)算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個(gè)極值之間的大小情況,而對(duì)其他數(shù)據(jù)的波動(dòng)情況不敏感。讓我們一起來(lái)做下列的數(shù)學(xué)活動(dòng)
算一算
把所有差相加,把所有差取絕對(duì)值相加,把這些差的平方相加。
想一想
你認(rèn)為哪種方法更能明顯反映數(shù)據(jù)的波動(dòng)情況?
第二步:講授新知:
。ㄒ唬┓讲
定義:設(shè)有n個(gè)數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用
來(lái)衡量這組數(shù)據(jù)的波動(dòng)大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。
意義:用來(lái)衡量一批數(shù)據(jù)的波動(dòng)大小
在樣本容量相同的情況下,方差越大,說(shuō)明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定
歸納:(1)研究離散程度可用(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動(dòng)大小
。3)方差主要應(yīng)用在平均數(shù)相等或接近時(shí)
(4)方差大波動(dòng)大,方差小波動(dòng)小,一般選波動(dòng)小的
方差的簡(jiǎn)便公式:
推導(dǎo):以3個(gè)數(shù)為例
。ǘ(biāo)準(zhǔn)差:
方差的算術(shù)平方根,即④
并把它叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差.它也是一個(gè)用來(lái)衡量一組數(shù)據(jù)的波動(dòng)大小的重要的量.
注意:波動(dòng)大小指的是與平均數(shù)之間差異,那么用每個(gè)數(shù)據(jù)與平均值的差完全平方后便可以反映出每個(gè)數(shù)據(jù)的波動(dòng)大小,整體的波動(dòng)大小可以通過(guò)對(duì)每個(gè)數(shù)據(jù)的波動(dòng)大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時(shí)間決定是否介紹平均差等可以反映數(shù)據(jù)波動(dòng)大小的其他統(tǒng)計(jì)量。
八年級(jí)數(shù)學(xué)教案 篇8
一、平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。
1.平移
2.平移的性質(zhì):⑴經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等;⑵對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。
3.簡(jiǎn)單的平移作圖
、俅_定個(gè)圖形平移后的位置的條件:
、判枰瓐D形的位置;⑵需要平移的方向;⑶需要平移的距離或一個(gè)對(duì)應(yīng)點(diǎn)的位置。
②作平移后的圖形的方法:
、耪页鲫P(guān)鍵點(diǎn);⑵作出這些點(diǎn)平移后的對(duì)應(yīng)點(diǎn);⑶將所作的對(duì)應(yīng)點(diǎn)按原來(lái)方式順次連接,所得的;
二、旋轉(zhuǎn):在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。
1.旋轉(zhuǎn)
2.旋轉(zhuǎn)的性質(zhì)
、判D(zhuǎn)變化前后,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
⑵旋轉(zhuǎn)過(guò)程中,圖形上每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度。
、侨我庖粚(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
、刃D(zhuǎn)前后的兩個(gè)圖形全等。
3.簡(jiǎn)單的旋轉(zhuǎn)作圖
、乓阎瓐D,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)點(diǎn),求作旋轉(zhuǎn)后的圖形。
⑵已知原圖,旋轉(zhuǎn)中心和一對(duì)對(duì)應(yīng)線段,求作旋轉(zhuǎn)后的圖形。
、且阎瓐D,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。
三、分析組合圖案的形成
、俅_定組合圖案中的“基本圖案”
②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系
、厶剿髟搱D案的形成過(guò)程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對(duì)稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合;
、尚D(zhuǎn)變換與軸對(duì)稱變換的組合;⑹軸對(duì)稱變換與平移變換的組合。
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
精選八年級(jí)數(shù)學(xué)教案3篇03-05
精選八年級(jí)數(shù)學(xué)教案三篇03-06
【精選】八年級(jí)數(shù)學(xué)教案三篇03-03
【精選】八年級(jí)數(shù)學(xué)教案3篇03-05
【精選】八年級(jí)數(shù)學(xué)教案四篇03-11