關于八年級數(shù)學教案范文6篇
作為一名老師,有必要進行細致的教案準備工作,借助教案可以更好地組織教學活動。那么應當如何寫教案呢?下面是小編整理的八年級數(shù)學教案6篇,希望對大家有所幫助。
八年級數(shù)學教案 篇1
一、平移:在平面內,將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。
1.平移
2.平移的性質:⑴經(jīng)過平移,對應點所連的線段平行且相等;⑵對應線段平行且相等,對應角相等。⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。(4)平移后的圖形與原圖形全等。
3.簡單的平移作圖
、俅_定個圖形平移后的位置的條件:
⑴需要原圖形的位置;⑵需要平移的方向;⑶需要平移的距離或一個對應點的位置。
、谧髌揭坪蟮膱D形的方法:
、耪页鲫P鍵點;⑵作出這些點平移后的對應點;⑶將所作的對應點按原來方式順次連接,所得的;
二、旋轉:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角稱為旋轉角。
1.旋轉
2.旋轉的性質
、判D變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。
⑵旋轉過程中,圖形上每一個點都繞旋轉中心沿相同方向轉動了相同的角度。
、侨我庖粚c與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。
、刃D前后的兩個圖形全等。
3.簡單的旋轉作圖
、乓阎瓐D,旋轉中心和一對對應點,求作旋轉后的圖形。
、埔阎瓐D,旋轉中心和一對對應線段,求作旋轉后的圖形。
⑶已知原圖,旋轉中心和旋轉角,求作旋轉后的圖形。
三、分析組合圖案的形成
①確定組合圖案中的“基本圖案”
、诎l(fā)現(xiàn)該圖案各組成部分之間的內在聯(lián)系
③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉變換;⑶軸對稱變換;⑷旋轉變換與平移變換的組合;
、尚D變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。
八年級數(shù)學教案 篇2
教學目標
知識與技能
用二元一次方程組解決有趣場景中的數(shù)字問 題和行程問題,歸納用方程(組)解決實際問題的一般步驟.
過程與方法
1.通過設置問題串,讓學生體會分析復雜問題的思考方法.
2.讓學生進一步經(jīng)歷和體驗列方程組解決實際問題的過程,體會方程組是刻畫現(xiàn)實世界 的有效數(shù)學模型.
情感態(tài)度與價值觀
在學習過程中讓學生體驗把復雜問題化為簡單問題的策略,體驗成功感,同時培養(yǎng)學生克服困難的意志和勇氣, 樹立自信心,并鼓勵學生合作 交流,培養(yǎng)學生的團隊精神.
教學重點
1.初步體會列方程組解決實際問題的步驟.
2.學會用圖表 分析較復雜的數(shù)量關系問題。
教學難點
將實際問題轉化 成二元一次方程組的數(shù)學模型;會用圖表分析數(shù) 量關系。
教學準備:
教具:教材,課件,電腦(視頻播放器)
學具:教材,練習本
教學過程
第一環(huán)節(jié):復習提問(5分鐘,學生口答)
內容:填空:
(1)一個兩位數(shù),個位數(shù)字是 ,十位數(shù)字是 ,則這個兩位數(shù)用代數(shù)式表示為 ;若交換個位和十位上的數(shù)字得到一個新的兩位數(shù),用代數(shù)式表示為 .
(2)一個兩位數(shù),個位上的數(shù)為 ,十位上的數(shù)為 ,如果在它們之間添上一個0,就得到一個三位數(shù),這個三位數(shù)用代數(shù)式可以表示為 .
(3)有兩個兩位數(shù) 和 ,如果將 放在 的左邊,就得到一個四位數(shù),那么這個四位數(shù)用代數(shù)式表示為 ;如果將 放在 的右邊,將得到一個新的四位數(shù),那么這個四位數(shù)用代數(shù)式可表示為 .
第二環(huán)節(jié):情境引入(10分鐘,學生動腦思考,全班交流)
內容:小明爸爸騎著摩托車帶著小明在公路上勻速行駛,下圖是小明每隔1小時看到的里程情況.你能 確定小明在12:00時看到的里程碑上的數(shù)嗎?
第三環(huán)節(jié):合作學習(10分鐘,小組討論,找等量關系,解決 問題)
內容:例1
兩個兩位數(shù)的和是68,在較大的兩位數(shù)的右邊接著寫較小的兩位數(shù),得到一個四位數(shù);在較大的兩位數(shù)的左邊寫上較小的兩位數(shù),也得到一個四位數(shù).已知前一個四位數(shù)比后一個四位數(shù)大2178,求這兩個兩位數(shù).
學生先獨立思考例1,在此基礎上,教師根據(jù)學生思考情況組織交流與討論.
第四環(huán)節(jié):鞏固練習(10分鐘,學生嘗試獨立解決問題,全班交流)
內容:練習
1.一個兩位數(shù),減去它的各位數(shù)字之和的3倍,結果是23;這個兩位數(shù)除以它的各位數(shù)字 之和,商是5,余數(shù)是1.這個兩位數(shù)是多少?
2.一個兩位數(shù)是另一個兩位數(shù)的3倍,如果把這個兩位數(shù)放在另一個兩位數(shù)的左 邊與放在右邊所得的數(shù)之和為8484.求這個兩位數(shù).
第五環(huán)節(jié):課堂小結(5分鐘,教師引導學生總結一般步驟)
內容:
1.教師提問:本節(jié)課我們學習了那些內容,對這些內容你有什么體會和想法?請與同伴交流.
2.師生互相交流總結出列方程(組)解決實際問題的一般步驟.
第 六環(huán)節(jié):布置作業(yè)
內容:習題7.6
A組(優(yōu)等生) 2,3,4
B組(中等生)2、3
C組(后三分之一生)2
八年級數(shù)學教案 篇3
課題:三角形全等的判定(三)
教學目標:
1、知識目標:
(1)掌握已知三邊畫三角形的方法;
(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;
(3)會添加較明顯的輔助線.
2、能力目標:
(1)通過尺規(guī)作圖使學生得到技能的訓練;
(2)通過公理的初步應用,初步培養(yǎng)學生的邏輯推理能力.
3、情感目標:
(1)在公理的形成過程中滲透:實驗、觀察、歸納;
(2)通過變式訓練,培養(yǎng)學生“舉一反三”的學習習慣.
教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。
教學難點:如何根據(jù)題目條件和求證的結論,靈活地選擇四種判定方法中最適當?shù)姆椒ㄅ卸▋蓚三角形全等。
教學用具:直尺,微機
教學方法:自學輔導
教學過程:
1、新課引入
投影顯示
問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數(shù)據(jù)?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?
這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質:三角形的三個元素――三條邊。
2、公理的獲得
問:通過上面問題的分析,滿足什么條件的兩個三角形全等?
讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)
公理:有三邊對應相等的兩個三角形全等。
應用格式: (略)
強調說明:
(1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。
(2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)
(3)、此公理與前面學過的公理區(qū)別與聯(lián)系
(4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。
(5)說明AAA與SSA不能判定三角形全等。
3、公理的應用
(1) 講解例1。學生分析完成,教師注重完成后的點評。
例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架
求證:AD⊥BC
分析:(設問程序)
(1)要證AD⊥BC只要證什么?
(2)要證∠1=
只要證什么?(3)要證∠1=∠2只要證什么?
(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?
證明:(略)
八年級數(shù)學教案 篇4
課時目標
1.掌握分式、有理式的概念。
2.掌握分式是否有意義、分式的值是否等于零的識別方法。
教學重點
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學難點:
正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。
教學時間:一課時。
教學用具:投影儀等。
教學過程:
一.復習提問
1.什么是整式?什么是單項式?什么是多項式?
2.判斷下列各式中,哪些是整式?哪些不是整式?
、伲玬2 ②1+x+y2- ③ ④
、 ⑥ ⑦
二.新課講解:
設問:不是整工式子中,和整式有什么區(qū)別?
小結:1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。
練習:下列各式中,哪些是分式哪些不是?
。1)、、(2)、(3)、(4)、(5)x2、(6)+4
強調:(6)+4帶有是無理式,不是整式,故不是分式。
2.小結:對整式、分式的正確區(qū)別:分式的.分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。
練習:課后練習P6練習1、2題
設問:(讓學生看課本上P5“思考”部分,然后回答問題。)
例題講解:課本P5例題1
分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。
(板書解題過程。)
3.小結:分式是否有意義的識別方法:當分式的分母為零時,分式無意義;當分式的分母不等于零時,分式有意義。
增加例題:當x取什么值時,分式有意義?
解:由分母x2-4=0,得x=±2。
∴ 當x≠±2時,分式有意義。
設問:什么時候分式的值為零呢?
例:
解:當 ① 分式的值為零
八年級數(shù)學教案 篇5
一、 教學目標
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點、難點
1.重點:理解分式有意義的條件.
2.難點:能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學生填寫P127[思考],學生自己依次填出:,,,.
2.學生看問題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時間,與以最大航速逆流航行60 所用時間相等,江水的流速為多少?
請同學們跟著教師一起設未知數(shù),列方程.
設江水的流速為v /h.
輪船順流航行90 所用的時間為小時,逆流航行60 所用時間小時,所以=.
3. 以上的式子,,,,有什么共同點?它們與分數(shù)有什么相同點和不同點?
四、例題講解
P128例1. 當下列分式中的字母為何值時,分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解
出字母的取值范圍.
[補充提問]如果題目為:當字母為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學生一題二用,也可以讓學生更全面地感受到分式及有關概念.
(補充)例2. 當為何值時,分式的值為0?
。1) (2) (3)
[分析] 分式的值為0時,必須同時滿足兩個條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.
[答案] (1)=0 (2)=2 (3)=1
五、隨堂練習
1.判斷下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 當x取何值時,下列分式有意義?
。1) (2) (3)
3. 當x為何值時,分式的值為0?
(1) (2) (3)
六、課后練習
1.下列代數(shù)式表示下列數(shù)量關系,并指出哪些是正是?哪些是分式?
(1)甲每小時做x個零件,則他8小時做零件 個,做80個零件需 小時.
。2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是 千米/時,輪船的逆流速度是 千米/時.
。3)x與的差于4的商是 .
2.當x取何值時,分式 無意義?
3. 當x為何值時,分式 的值為0?
八年級數(shù)學教案 篇6
一、創(chuàng)設情境
在學習與生活中,經(jīng)常要研究一些數(shù)量關系,先看下面的問題.
問題1如圖是某地一天內的氣溫變化圖.
看圖回答:
(1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.
(2)這一天中,最高氣溫是多少?最低氣溫是多少?
(3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?
解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;
(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;
(3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.
從圖中我們可以看到,隨著時間t(時)的變化,相應地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關系呢?
二、探究歸納
問題2銀行對各種不同的存款方式都規(guī)定了相應的利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:
觀察上表,說說隨著存期x的增長,相應的年利率y是如何變化的.
解隨著存期x的增長,相應的年利率y也隨著增長.
問題3收音機刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的.下面是一些對應的數(shù)值:
觀察上表回答:
(1)波長l和頻率f數(shù)值之間有什么關系?
(2)波長l越大,頻率f就________.
解(1)l與f的乘積是一個定值,即
lf=300000,
或者說.
(2)波長l越大,頻率f就 越小 .
問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關系:S=_________.
利用這個關系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結果填入下表:
由此可以看出,圓的半徑越大,它的面積就_________.
解S=πr2.
圓的半徑越大,它的面積就越大.
在上面的問題中,我們研究了一些數(shù)量關系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).
上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關.一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值
【關于八年級數(shù)學教案范文6篇】相關文章:
關于小學數(shù)學教案范文5篇02-03
關于小學數(shù)學教案范文7篇03-04
關于小學數(shù)學教案范文8篇02-09
關于小學數(shù)學教案范文9篇11-18
關于小學數(shù)學教案范文6篇11-07
關于小學數(shù)學教案10篇07-02
關于小學數(shù)學教案6篇06-22
關于小學數(shù)學教案7篇06-16
關于小學數(shù)學教案9篇04-09
關于小學數(shù)學教案八篇04-05