八年級(jí)數(shù)學(xué)的教案
作為一名教職工,可能需要進(jìn)行教案編寫工作,教案有助于順利而有效地開(kāi)展教學(xué)活動(dòng)。那么什么樣的教案才是好的呢?以下是小編收集整理的八年級(jí)數(shù)學(xué)的教案,歡迎大家分享。
八年級(jí)數(shù)學(xué)的教案1
一、學(xué)習(xí)目標(biāo)
二、學(xué)習(xí)過(guò)程
閱讀教材
獨(dú)立完成下列預(yù)習(xí)作業(yè):
1、填空:
①與的相同,稱為分?jǐn)?shù),+ =,法則是;
②與的不同,稱為分?jǐn)?shù),+ =,運(yùn)算方法為;
2、與的相同,稱為分式;與的不同,稱為分式.
3、分式的加減法法則同分?jǐn)?shù)的加減法法則類似
、偻帜阜质较嗉訙p,分母,把分子;
、诋惙帜阜质较嗉訙p,先,變?yōu)橥帜傅腵分式,再.
4.,的最簡(jiǎn)公分母是.
5、在括號(hào)內(nèi)填入適當(dāng)?shù)拇鷶?shù)式:
三、合作交流,解決問(wèn)題:
1、計(jì)算:⑴ + ⑵ - ⑶ +
2、計(jì)算:⑴ ⑵ +
、 ⑷ + +
3、計(jì)算:
四、課堂測(cè)控:
3、計(jì)算:⑴ ⑵
八年級(jí)數(shù)學(xué)的教案2
一、學(xué)習(xí)目標(biāo):
1、會(huì)推導(dǎo)兩數(shù)差的平方公式,會(huì)用式子表示及用文字語(yǔ)言敘述;
2、會(huì)運(yùn)用兩數(shù)差的平方公式進(jìn)行計(jì)算。
二、學(xué)習(xí)過(guò)程:
請(qǐng)同學(xué)們快速閱讀課本第27—28頁(yè)的內(nèi)容,并完成下面的練習(xí)題:
(一)探索
1、計(jì)算: (a - b) =
方法一: 方法二:
方法三:
2、兩數(shù)差的平方用式子表示為_(kāi)________________________;
用文字語(yǔ)言敘述為_(kāi)__________________________ 。
3、兩數(shù)差的平方公式結(jié)構(gòu)特征是什么?
(二)現(xiàn)學(xué)現(xiàn)用
利用兩數(shù)差的平方公式計(jì)算:
1、(3 - a) 2、 (2a -1) 3、(3y-x)
4、(2x – 4y) 5、( 3a - )
。ㄈ┖献鞴リP(guān)
靈活運(yùn)用兩數(shù)差的平方公式計(jì)算:
1、(999) 2、( a – b – c )
3、(a + 1) -(a-1)
(四)達(dá)標(biāo)訓(xùn)練
1、、選擇:下列各式中,與(a - 2b) 一定相等的.是( )
A、a -2ab + 4b B、a -4b
C、a +4b D、 a - 4ab +4b
2、填空:
(1)9x + + 16y = (4y - 3x )
(2) ( ) = m - 8m + 16
2、計(jì)算:
。 a - b) ( x -2y )
3、有一邊長(zhǎng)為a米的正方形空地,現(xiàn)準(zhǔn)備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計(jì)算出噴泉水池的面積嗎?
(四)提升
1、本節(jié)課你學(xué)到了什么?
2、已知a – b = 1,a + b = 25,求ab 的值
八年級(jí)數(shù)學(xué)的教案3
教學(xué)目標(biāo):完全平方公式的推導(dǎo)及其應(yīng)用;完全平方公式的幾何解釋;視學(xué)生對(duì)算理的理解,有意識(shí)地培養(yǎng)學(xué)生的思維條理性和表達(dá)能力.
教學(xué)重點(diǎn)與難點(diǎn):完全平方公式的推導(dǎo)過(guò)程、結(jié)構(gòu)特點(diǎn)、幾何解釋,靈活應(yīng)用.
教學(xué)過(guò)程:
一、提出問(wèn)題,學(xué)生自學(xué)
問(wèn)題:根據(jù)乘方的定義,我們知道:a2=aa,那么(a+b)2應(yīng)該寫成什么樣的形式呢?(a+b)2的運(yùn)算結(jié)果有什么規(guī)律?計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律?
。1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;
。2)(p1)2=(p1)(p1)=_______;(m2)2=_______;
學(xué)生討論,教師歸納,得出結(jié)果:
(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)=m2+4m+4
(2)(p1)2=(p1)(p1)=p22p+1
(m2)2=(m2)(m2)=m24m+4
分析推廣:結(jié)果中有兩個(gè)數(shù)的平方和,而2p=2p1,4m=2m2,恰好是兩個(gè)數(shù)乘積的二倍(1)(2)之間只差一個(gè)符號(hào).
推廣:計(jì)算(a+b)2=__________;(ab)2=__________.
得到公式,分析公式
結(jié)論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
即:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的`積的2倍.
二、幾何分析:
你能根據(jù)圖(1)和圖(2)的面積說(shuō)明完全平方公式嗎?
圖(1)大正方形的邊長(zhǎng)為(a+b),面積就是(a+b)2,同時(shí),大正方形可以分成圖中①②③④四個(gè)部分,它們分別的面積為a2、ab、ab、b2,因此,整個(gè)面積為a2+ab+ab+b2=a2+2ab+b2,即說(shuō)明(a+b)2=a2+2ab+b2. 請(qǐng)點(diǎn)擊下載Word版完整教案:新人教版八年級(jí)數(shù)學(xué)上冊(cè)《完全平方公式》教案教案《新人教版八年級(jí)數(shù)學(xué)上冊(cè)《完全平方公式》教案》,來(lái)自網(wǎng)!
八年級(jí)數(shù)學(xué)的教案4
教學(xué)目標(biāo)
、俳(jīng)歷探索整式除法運(yùn)算法則的過(guò)程,會(huì)進(jìn)行簡(jiǎn)單的整式除法運(yùn)算(只要求單項(xiàng)式除以單項(xiàng)式,并且結(jié)果都是整式),培養(yǎng)學(xué)生獨(dú)立思考、集體協(xié)作的能力。
、诶斫庹匠ǖ乃憷恚l(fā)展有條理的思考及表達(dá)能力。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):整式除法的運(yùn)算法則及其運(yùn)用。
難點(diǎn):整式除法的運(yùn)算法則的推導(dǎo)和理解,尤其是單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則。
教學(xué)準(zhǔn)備
卡片及多媒體課件。
教學(xué)設(shè)計(jì)
情境引入
教科書(shū)第161頁(yè)問(wèn)題:木星的質(zhì)量約為1。90×1024噸,地球的質(zhì)量約為5。98×1021噸,你知道木星的質(zhì)量約為地球質(zhì)量的多少倍嗎?
重點(diǎn)研究算式(1。90×1024)÷(5。98×1021)怎樣進(jìn)行計(jì)算,目的是給出下面兩個(gè)單項(xiàng)式相除的模型。
注:教科書(shū)從實(shí)際問(wèn)題引入單項(xiàng)式的除法運(yùn)算,學(xué)生在探索這個(gè)問(wèn)題的過(guò)程中,將自然地體會(huì)到學(xué)習(xí)單項(xiàng)式的除法運(yùn)算的必要性,了解數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,同時(shí)再次經(jīng)歷感受較大數(shù)據(jù)的過(guò)程。
探究新知
。1)計(jì)算(1。90×1024)÷(5。98×1021),說(shuō)說(shuō)你計(jì)算的根據(jù)是什么?
。2)你能利用(1)中的方法計(jì)算下列各式嗎?
8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。
。3)你能根據(jù)(2)說(shuō)說(shuō)單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?
注:教師可以鼓勵(lì)學(xué)生自己發(fā)現(xiàn)系數(shù)、同底數(shù)冪的底數(shù)和指數(shù)發(fā)生的變化,并運(yùn)用自己的語(yǔ)言進(jìn)行描述。
單項(xiàng)式的除法法則的推導(dǎo),應(yīng)按從具體到一般的步驟進(jìn)行。探究活動(dòng)的安排,是使學(xué)生通過(guò)對(duì)具體的特例的計(jì)算,歸納出單項(xiàng)式的除法運(yùn)算性質(zhì),并能運(yùn)用乘除互逆的關(guān)系加以說(shuō)明,也可類比分?jǐn)?shù)的約分進(jìn)行。在這些活動(dòng)過(guò)程中,學(xué)生的化歸、符號(hào)演算等代數(shù)推理能力和有條理的表達(dá)能力得到進(jìn)一步發(fā)展。重視算理算法的滲透是新課標(biāo)所強(qiáng)調(diào)的。
歸納法則
單項(xiàng)式相除,把系數(shù)與同底數(shù)冪分別相除作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的'一個(gè)因式。
注:通過(guò)總結(jié)法則,培養(yǎng)學(xué)生的概括能力,養(yǎng)成用數(shù)學(xué)語(yǔ)言表達(dá)自己想法的數(shù)學(xué)學(xué)習(xí)習(xí)慣。
應(yīng)用新知
例2計(jì)算:
。1)28x4y2÷7x3y;
。2)—5a5b3c÷15a4b。
首先指明28x4y2與7x3y分別是被除式與除式,在這兒省去了括號(hào)。對(duì)本例可以采用學(xué)生口述,教師板書(shū)的形式完成?谑龊桶鍟(shū)都應(yīng)注意展示法則的應(yīng)用,計(jì)算過(guò)程要詳盡,使學(xué)生盡快熟悉法則。
注:?jiǎn)雾?xiàng)式除以單項(xiàng)式,既要對(duì)系數(shù)進(jìn)行運(yùn)算,又要對(duì)相同字母進(jìn)行指數(shù)運(yùn)算,同時(shí)對(duì)只在一個(gè)單項(xiàng)式里含有的冪要加以注意,這些對(duì)剛剛接觸整式除法的學(xué)生來(lái)講,難免會(huì)出現(xiàn)照看不全的情況,所以更應(yīng)督促學(xué)生細(xì)心解答問(wèn)題。
鞏固新知教科書(shū)第162頁(yè)練習(xí)1及練習(xí)2。
學(xué)生自己嘗試完成計(jì)算題,同桌交流。
注:在獨(dú)立解題和同伴的相互交流過(guò)程中讓學(xué)生自己去體會(huì)法則、掌握法則,印象更為深刻,也有助于培養(yǎng)學(xué)生良好的思維習(xí)慣和主動(dòng)參與學(xué)習(xí)的習(xí)慣。
作業(yè)
1、必做題:教科書(shū)第164頁(yè)習(xí)題15。3第1題;第2題。
2、選做題:教科書(shū)第164頁(yè)習(xí)題15。3第8題
八年級(jí)數(shù)學(xué)的教案5
一、教學(xué)目標(biāo)
1.使學(xué)生根據(jù)分?jǐn)?shù)的通分法則及分式的基本性質(zhì),分析、歸納出分式的通分法則,并能熟練掌握通分運(yùn)算。
2.使學(xué)生理解和掌握分式和減法法則,并會(huì)應(yīng)用法則進(jìn)行分式加減的運(yùn)算。
3.使學(xué)生能夠靈活運(yùn)用分式的有關(guān)法則進(jìn)行分式的四則混合運(yùn)算。
4.引導(dǎo)學(xué)生不斷小結(jié)運(yùn)算方法和技巧,提高運(yùn)算能力。
二、教學(xué)重點(diǎn)和難點(diǎn)
1.重點(diǎn):分式的加減運(yùn)算。
2.難點(diǎn):異分母的分式加減法運(yùn)算。
三、教學(xué)方法
啟發(fā)式、分組討論。
四、教學(xué)手段
幻燈片。
五、教學(xué)過(guò)程
(一)引入
1.如何計(jì)算:2.如何計(jì)算:3.若分母不同如何計(jì)算?如:
(二)新課
1.類比分?jǐn)?shù)的通分得到分式的.通分:把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。
2.通分的依據(jù):分式的基本性質(zhì)。
3.通分的關(guān)鍵:確定幾個(gè)分式的公分母。
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡(jiǎn)公分母。
例1通分:
(1)解:∵最簡(jiǎn)公分母是,
小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù)。
(2)解:
例2通分:
。1)解:∵最簡(jiǎn)公分母的是2x(x+1)(x—1),
小結(jié):當(dāng)分母是多項(xiàng)式時(shí),應(yīng)先分解因式。
(2)解:將分母分解因式:∴最簡(jiǎn)公分母為2(x+2)(x—2),
練習(xí):教材P,79中1、2、3。
。ㄈ┱n堂小結(jié)
1.通分與約分雖都是針對(duì)分式而言,但卻是兩種相反的變形。約分是針對(duì)一個(gè)分式而言,而通分是針對(duì)多個(gè)分式而言;約分是把分式化簡(jiǎn),而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來(lái)。
2.通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變。
3.一般地,通分結(jié)果中,分母不展開(kāi)而寫成連乘積的形式,分子則乘出來(lái)寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備。
八年級(jí)數(shù)學(xué)的教案6
第三十四學(xué)時(shí):14.2.1平方差公式
一、學(xué)習(xí)目標(biāo):
1.經(jīng)歷探索平方差公式的過(guò)程。
2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算。
二、重點(diǎn)難點(diǎn)
重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用;
難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。
三、合作學(xué)習(xí)
你能用簡(jiǎn)便方法計(jì)算下列各題嗎?
。1)20xx×1999(2)998×1002
導(dǎo)入新課:計(jì)算下列多項(xiàng)式的積.
(1)(x+1)(x—1);
。2)(m+2)(m—2)
。3)(2x+1)(2x—1);
。4)(x+5y)(x—5y)。
結(jié)論:兩個(gè)數(shù)的.和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差。
即:(a+b)(a—b)=a2—b2
四、精講精練
例1:運(yùn)用平方差公式計(jì)算:
。1)(3x+2)(3x—2);
。2)(b+2a)(2a—b);
。3)(—x+2y)(—x—2y)。
例2:計(jì)算:
。1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習(xí)
計(jì)算:
(1)(a+b)(—b+a);
。2)(—a—b)(a—b);
。3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
。5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小結(jié)
。╝+b)(a—b)=a2—b2
八年級(jí)數(shù)學(xué)的教案7
一、創(chuàng)設(shè)情境
在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問(wèn)題.
問(wèn)題1如圖是某地一天內(nèi)的氣溫變化圖.
看圖回答:
(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為多少?任意給出這天中的某一時(shí)刻,說(shuō)出這一時(shí)刻的氣溫.
(2)這一天中,最高氣溫是多少?最低氣溫是多少?
(3)這一天中,什么時(shí)段的氣溫在逐漸升高?什么時(shí)段的氣溫在逐漸降低?
解(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為-1℃、2℃、5℃;
(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;
(3)這一天中,3時(shí)~14時(shí)的氣溫在逐漸升高.0時(shí)~3時(shí)和14時(shí)~24時(shí)的氣溫在逐漸降低.
從圖中我們可以看到,隨著時(shí)間t(時(shí))的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?
二、探究歸納
問(wèn)題2銀行對(duì)各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國(guó)工商銀行為“整存整取”的存款方式規(guī)定的年利率:
觀察上表,說(shuō)說(shuō)隨著存期x的增長(zhǎng),相應(yīng)的年利率y是如何變化的.
解隨著存期x的增長(zhǎng),相應(yīng)的年利率y也隨著增長(zhǎng).
問(wèn)題3收音機(jī)刻度盤的波長(zhǎng)和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對(duì)應(yīng)的'數(shù)值:
觀察上表回答:
(1)波長(zhǎng)l和頻率f數(shù)值之間有什么關(guān)系?
(2)波長(zhǎng)l越大,頻率f就________.
解(1)l與f的乘積是一個(gè)定值,即
lf=300000,
或者說(shuō).
(2)波長(zhǎng)l越大,頻率f就 越小 .
問(wèn)題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.
利用這個(gè)關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時(shí)圓的面積,并將結(jié)果填入下表:
由此可以看出,圓的半徑越大,它的面積就_________.
解S=πr2.
圓的半徑越大,它的面積就越大.
在上面的問(wèn)題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫(huà)了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會(huì)發(fā)生變化的量.例如問(wèn)題1中,刻畫(huà)氣溫變化規(guī)律的量是時(shí)間t和氣溫T,氣溫T隨著時(shí)間t的變化而變化,它們都會(huì)取不同的數(shù)值.像這樣在某一變化過(guò)程中,可以取不同數(shù)值的量,叫做變量(variable).
上面各個(gè)問(wèn)題中,都出現(xiàn)了兩個(gè)變量,它們互相依賴,密切相關(guān).一般地,如果在一個(gè)變化過(guò)程中,有兩個(gè)變量,例如x和y,對(duì)于x的每一個(gè)值
八年級(jí)數(shù)學(xué)的教案8
活動(dòng)1、提出問(wèn)題
一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?
問(wèn)題:10+20是什么運(yùn)算?
活動(dòng)2、探究活動(dòng)
下列3個(gè)小題怎樣計(jì)算?
問(wèn)題:1)-還能繼續(xù)往下合并嗎?
2)看來(lái)二次根式有的能合并,有的不能合并,通過(guò)對(duì)以上幾個(gè)題的觀察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開(kāi)方數(shù)相同的進(jìn)行合并。
活動(dòng)3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問(wèn)題情景,引起學(xué)生思考。
學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的草皮。
教師提問(wèn):學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的.加減法運(yùn)算。
我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗(yàn)證:
、僭O(shè)=,類比合并同類項(xiàng)或面積法;
②學(xué)生思考,得出先化簡(jiǎn),再合并的解題思路
、巯然(jiǎn),再合并
學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開(kāi)方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。
提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。
八年級(jí)數(shù)學(xué)的教案9
教學(xué)目標(biāo):
。1)理解通分的意義,理解最簡(jiǎn)公分母的意義;
。2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。
教學(xué)重點(diǎn):分式通分的理解和掌握。
教學(xué)難點(diǎn):分式通分中最簡(jiǎn)公分母的確定。
教學(xué)工具:投影儀
教學(xué)方法:啟發(fā)式、討論式
教學(xué)過(guò)程:
(一)引入
。1)如何計(jì)算:
由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡(jiǎn)公分母的概念。
。2)如何計(jì)算:
。3)何計(jì)算:
引導(dǎo)學(xué)生思考,猜想如何求解?
(二)新課
1、類比分?jǐn)?shù)的通分得到分式的通分:
把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的通分。
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2、通分的依據(jù):分式的基本性質(zhì)。
3、通分的關(guān)鍵:確定幾個(gè)分式的最簡(jiǎn)公分母。
通常取各分母的`所有因式的最高次冪的積作最簡(jiǎn)公分母,這樣的公分母叫做最簡(jiǎn)公分母。
根據(jù)分式通分和最簡(jiǎn)公分母的定義,將分式通分:
最簡(jiǎn)公分母為:
然后根據(jù)分式的基本性質(zhì),分別對(duì)原來(lái)的各分式的分子和分母乘一個(gè)適當(dāng)?shù)恼,使各分式的分母都化為通分如下:xxx
通過(guò)本例使學(xué)生對(duì)于分式的通分大致過(guò)程和思路有所了解。讓學(xué)生歸納通分的思路過(guò)程。
例1通分:xxx
分析:讓學(xué)生找分式的公分母,可設(shè)問(wèn)“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。
解:∵最簡(jiǎn)公分母是12xy2,
小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡(jiǎn)公分母的系數(shù)。
解:∵最簡(jiǎn)公分母是10a2b2c2,
由學(xué)生歸納最簡(jiǎn)公分母的思路。
分式通分中求最簡(jiǎn)公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡(jiǎn)公分母。
八年級(jí)數(shù)學(xué)的教案10
一、知識(shí)點(diǎn):
1.坐標(biāo)(x,y)與點(diǎn)的對(duì)應(yīng)關(guān)系
有序數(shù)對(duì):有順序的兩個(gè)數(shù)x與y組成的數(shù)對(duì),記作(x,y);
注意:x、y的先后順序?qū)ξ恢玫挠绊憽?/p>
2.平面直角坐標(biāo)系:
(1)、構(gòu)成坐標(biāo)系的各種名稱:四個(gè)象限和兩條坐標(biāo)軸
(2)、各種特殊點(diǎn)的坐標(biāo)特點(diǎn):坐標(biāo)軸上的點(diǎn)至少有一個(gè)坐標(biāo)
為0;X軸上的點(diǎn)的縱坐標(biāo)為0,y軸上點(diǎn)的橫坐標(biāo)為0,原點(diǎn)
的坐標(biāo)為(0,0)。
3.坐標(biāo)(x,y)的幾何意義
平面直角坐標(biāo)系是代數(shù)與幾何聯(lián)系的紐帶,坐標(biāo)(x,y)有某
幾何意義,如點(diǎn)A(-3,2)它到x軸、y軸、原點(diǎn)的距離分別是︱x︱
=︱2︱=2,︱y︱=︱-3︱=3,OA = 。
4.注意各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)
點(diǎn)P(x,y)在第一象限內(nèi),則x0,y0,反之亦然.
點(diǎn)P(x,y)在第二象限內(nèi),則x0,y0,反之亦然.
點(diǎn)P(x,y)在第三象限內(nèi),則x0,y0,反之亦然.
點(diǎn)P(x,y)在第四象限內(nèi),則x0,y0,反之亦然.
5.平行于坐標(biāo)軸的直線的點(diǎn)的坐標(biāo)特點(diǎn):
平行于x軸(或橫軸)的直線上的點(diǎn)的這 縱 坐標(biāo)相同;
平行于y軸(或縱軸)的直線上的點(diǎn)的 橫 坐標(biāo)相同。
6.各象限的角平分線上的點(diǎn)的坐標(biāo)特點(diǎn):
第一、三象限角平分線上的點(diǎn)的橫縱坐標(biāo) 相同 ;
第二、四象限角平分線上的點(diǎn)的橫縱坐標(biāo) 互為相反數(shù) 。
7.與坐標(biāo)軸、原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn):
關(guān)于x軸對(duì)稱的點(diǎn)的橫坐標(biāo) 相同 ,縱坐標(biāo) 互為相反數(shù)
關(guān)于y軸對(duì)稱的點(diǎn)的縱坐標(biāo) 相同 ,橫坐標(biāo) 互為相反數(shù)
關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的橫坐標(biāo)、縱坐標(biāo)都 互為相反數(shù)
8.特殊位置點(diǎn)的特殊坐標(biāo):
坐標(biāo)軸上點(diǎn)P(x,y) 連線平行于坐標(biāo)軸的點(diǎn) 點(diǎn)P(x,y)在各象限的坐標(biāo)特點(diǎn)
X軸 Y軸 原點(diǎn) 平行X軸 平行Y軸 第一象限 第二象限 第三象限 第四象限
(x,0) (0,y) (0,0) 縱坐標(biāo) 相同
橫坐標(biāo) 不同 橫坐標(biāo) 相同
縱坐標(biāo) 不同
9.利用平面直角坐標(biāo)系繪制區(qū)域內(nèi)一些點(diǎn)分布情況平面圖過(guò)程如下:
(1)建立坐標(biāo)系,選擇一個(gè)適當(dāng)?shù)膮⒄拯c(diǎn)為原點(diǎn),確定x軸、y軸的正方向;
(2)根據(jù)具體問(wèn)題確定適當(dāng)?shù)谋壤撸谧鴺?biāo)軸上標(biāo)出單位長(zhǎng)度;
(3)在坐標(biāo)平面內(nèi)畫(huà)出這些點(diǎn),寫出各點(diǎn)的坐標(biāo)和各個(gè)地點(diǎn)的名稱。
10.用坐標(biāo)表示平移:見(jiàn)下圖
二、典型訓(xùn)練:
1.位置的確定
1、如圖,圍棋盤的左下角呈現(xiàn)的是一局圍棋比賽中的幾手棋.為記錄棋譜方便,橫線用數(shù)字表示.縱線用英文字母表示,這樣,黑棋①的位置可記為(C,4),白棋②的位置可記為(E,3),則白棋⑨的位置應(yīng)記為 _____.
2、如圖所示的象棋盤上,若帥位于點(diǎn)(1,﹣3)上,相位于點(diǎn)(3,﹣3)上,則炮位于點(diǎn)( )
A、(﹣1,1) B、(﹣l,2) C、(﹣2,0) D、(﹣2,2)
2.平面直角坐標(biāo)系內(nèi)的點(diǎn)的特點(diǎn): 一)確定字母取值范圍:
1、點(diǎn)A(m+3,m+1)在x軸上,則A點(diǎn)的坐標(biāo)為( )
A (0,-2) B、(2,0) C、(4,0) D、(0,-4)
2、若點(diǎn)M(1, )在第四象限內(nèi),則 的取值范圍是 .
3、已知點(diǎn)P(x,y+1)在第二象限,則點(diǎn)Q(﹣x+2,2y+3)在第 象限.
二)確定點(diǎn)的坐標(biāo):
1、點(diǎn) 在第二象限內(nèi), 到 軸的距離是4,到 軸的距離是3,那么點(diǎn) 的坐標(biāo)為( )
A.(-4,3) B.(-3, -4) C.(-3, 4) D.(3, -4)
2、若點(diǎn)P在x軸的下方,y軸的左方,到每條坐標(biāo)軸的距離都是3,則點(diǎn)P的坐標(biāo)為( )
A、(3,3) B、(﹣3,3) C、(﹣3,﹣3) D、(3,﹣3)
3、在x軸上與點(diǎn)(0,﹣2)距離是4個(gè)單位長(zhǎng)度的點(diǎn)有 .
4、若點(diǎn)(5﹣a,a﹣3)在第一、三象限角平分線上,則a= .
三)確定對(duì)稱點(diǎn)的坐標(biāo):
1、P(﹣1,2)關(guān)于x軸對(duì)稱的點(diǎn)是 ,關(guān)于y軸對(duì)稱的點(diǎn)是 ,關(guān)于原點(diǎn)對(duì)稱的點(diǎn)是 .
2、已知點(diǎn) 關(guān)于 軸的對(duì)稱點(diǎn)為 ,則 的值是( )
A. B. C. D.
3、在平面直角坐標(biāo)系中,將點(diǎn)A(1,2)的橫坐標(biāo)乘以﹣1,縱坐標(biāo)不變,
得到點(diǎn)A,則點(diǎn)A和點(diǎn)A的關(guān)系是( )
A、關(guān)于x軸對(duì)稱 B、將點(diǎn)A向x軸負(fù)方向平移一個(gè)單位得點(diǎn)A
C、關(guān)于原點(diǎn)對(duì)稱 D、關(guān)于y軸對(duì)稱
3.與平移有關(guān)的問(wèn)題
1、通過(guò)平移把點(diǎn)A(2,﹣3)移到點(diǎn)A(4,﹣2),按同樣的平移方式,點(diǎn)B(3,1)移到點(diǎn)B,則點(diǎn)B的坐標(biāo)是 .
2、如圖,點(diǎn)A坐標(biāo)為(-1,1),將此小船ABCD向左平移2個(gè)單位,再向上平移3個(gè)單位得ABCD.
(1)畫(huà)出平面直角坐標(biāo)系;
(2)畫(huà)出平移后的小船ABCD,
寫出A,B,C,D各點(diǎn)的坐標(biāo).
3、在平面直角坐標(biāo)系中,□ABCD的頂點(diǎn)A、B、D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點(diǎn)C的坐標(biāo)是( )
A.(3,7) B.(5,3) C.(7,3) D.(8,2)
4.建立直角坐標(biāo)系
1、如圖1是某市市區(qū)四個(gè)旅游景點(diǎn)示意圖(圖中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度),請(qǐng)以某景點(diǎn)為原點(diǎn),建立平面直角坐標(biāo)系,用坐標(biāo)表示下列景點(diǎn)的位置.①動(dòng)物園 ,②烈士陵園 .
2、如圖,機(jī)器人從A點(diǎn),沿著西南方向,行了4 個(gè)單位到達(dá)B點(diǎn)后,觀察到原點(diǎn)O在它的南偏東60的方向上,則原來(lái)A的坐標(biāo)為 (結(jié)果保留根號(hào)).
3、如圖,△AOB是邊長(zhǎng)為5的等邊三角形,則A,B兩點(diǎn)的坐標(biāo)分別是A ,B .
5.創(chuàng)新題: 一)規(guī)律探索型:
1、如圖2,已知Al(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、.則點(diǎn)A2015的坐標(biāo)為_(kāi)_______.
二)閱讀理解型:
1、在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn),設(shè)坐標(biāo)軸的單位長(zhǎng)度為1cm,整點(diǎn)P從原點(diǎn)O出發(fā),速度為1cm/s,且整點(diǎn)P作向上或向右運(yùn)動(dòng)(如圖1所示.運(yùn)動(dòng)時(shí)間(s)與整點(diǎn)(個(gè))的關(guān)系如下表:
整點(diǎn)P從原點(diǎn)出發(fā)的.時(shí)間(s) 可以得到整點(diǎn)P的坐標(biāo) 可以得到整點(diǎn)P的個(gè)數(shù)
1 (0,1)(1,0) 2
2 (0,2)(1,1),(2,0) 3
3 (0,3)(1,2)(2,1)(3,0) 4
根據(jù)上表中的規(guī)律,回答下列問(wèn)題:
(1)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)4s時(shí),可以得到的整點(diǎn)的個(gè)數(shù)為_(kāi)_______個(gè).
(2)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8s時(shí),在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連結(jié)這些整點(diǎn).
(3)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)____s時(shí),可以得到整點(diǎn)(16,4)的位置.
三、易錯(cuò)題:
1、 已知點(diǎn)P(4,a)到橫軸的距離是3,則點(diǎn)P的坐標(biāo)是_____.
2、 已知點(diǎn)P(m,n)到x軸的距離為3,到y(tǒng)軸的距離等于5,則點(diǎn)P的坐標(biāo)是_____.
3、 已知點(diǎn)P(m,2m-1)在x軸上,則P點(diǎn)的坐標(biāo)是_______.
4、如圖,四邊形ABCD各個(gè)頂點(diǎn)的坐標(biāo)分別為 (2,8),(11,6),(14,0),(0,0)。
(1)確定這個(gè)四邊形的面積;
(2)如果把原來(lái)ABCD各個(gè)頂點(diǎn)縱坐標(biāo)保持不變,橫坐標(biāo)增加2,所得的四邊形面積又是多少?
四、提高題:
1、在平面直角坐標(biāo)系中,點(diǎn)(-2,4)所在的象限是( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
2、若a0,則點(diǎn)P(-a,2)應(yīng)在 ( )
A.第象限內(nèi) B.第二象限內(nèi) C.第三象限內(nèi) D.第四象限內(nèi)
3、已知 ,則點(diǎn) 在第______象限.
4、若 +(b+2)2=0,則點(diǎn)M(a,b)關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)為_(kāi)_____.
5、點(diǎn)P(1,2)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)是 . 已知點(diǎn)A和點(diǎn)B(a,-b)關(guān)于y軸對(duì)稱,求點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)C的坐標(biāo)___________.
6、已知點(diǎn) A(3a-1,2-b),B(2a-4,2b+5).
若A與B關(guān)于x軸對(duì)稱,則a=________,b=_______;若A與B關(guān)于y軸對(duì)稱,則a=________,b=_______;
若A與B關(guān)于原點(diǎn)對(duì)稱,則a=________,b=_______.
7、學(xué)生甲錯(cuò)將P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的次序顛倒,寫成(m,n),學(xué)生乙錯(cuò)將Q點(diǎn)的坐標(biāo)寫成它關(guān)于x軸對(duì)稱點(diǎn)的坐標(biāo),寫成(-n,-m),則P點(diǎn)和Q點(diǎn)的位置關(guān)系是_________.
8、點(diǎn)P(x,y)在第四象限內(nèi),且|x|=2,|y| =5,P點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)是_______.
9、以點(diǎn)(4,0)為圓心,以5為半徑的圓與y軸交點(diǎn)的坐標(biāo)為_(kāi)_____.
10、點(diǎn)P( , )到x軸的距離為_(kāi)_______,到y(tǒng)軸的距離為_(kāi)________。
11、點(diǎn)P(m,-n)與兩坐標(biāo)軸的距離___________________________________________________。
12、已知點(diǎn)P到x軸和y軸的距離分別為3和4,則P點(diǎn)坐標(biāo)為_(kāi)_________________________.
13、點(diǎn)P在第二象限,若該點(diǎn)到x軸的距離為,到y(tǒng)軸的距離為1,則點(diǎn)P的坐標(biāo)是( )
A.( 1, ) B.( ,1) C.( , ) D.(1, )
14、點(diǎn)A(4,y)和點(diǎn)B(x, ),過(guò)A,B兩點(diǎn)的直線平行x軸,且 ,則 ______, ______.
15、已知等邊三角形ABC的邊長(zhǎng)是4,以AB邊所在的直線為x軸,AB邊的中點(diǎn)為原點(diǎn),建立直角坐標(biāo)系,則頂點(diǎn)C的坐標(biāo)為_(kāi)_______________.
16、通過(guò)平移把點(diǎn)A(2,-3)移到點(diǎn)A(4,-2),按同樣的平移方式,點(diǎn)B(3,1)移到點(diǎn)B,則點(diǎn)B的坐標(biāo)是_____________.
17、如圖11,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90后得到△ABC,則A點(diǎn)的對(duì)應(yīng)點(diǎn)A的坐標(biāo)是( )
A.(-3,-2) B.(2,2) C.(3,0) D.(2,1)
18、平面直角坐標(biāo)系 內(nèi)有一點(diǎn)A(a,b),若ab=0,則點(diǎn)A的位置在( ).
A.原點(diǎn) B. x軸上 C.y 軸上 D.坐標(biāo)軸上
19、已知等邊△ABC的兩個(gè)頂點(diǎn)坐標(biāo)為A(-4,0)、B(2,0),則點(diǎn)C的坐標(biāo)為_(kāi)_____,△ABC的面積為_(kāi)_____.
20、(1)將下圖中的各個(gè)點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)都乘以-1,與原圖案相比,所得圖案有什么變化?
(2)將下圖中的各個(gè)點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都乘以-1,與原圖案相比,所得圖案有什么變化?
(3)將下圖中的各個(gè)點(diǎn)的橫坐標(biāo)都乘以-2,縱坐標(biāo)都乘以-2,與原圖案相比,所得圖案有什么變化?
八年級(jí)數(shù)學(xué)的教案11
教材分析
本章屬于“數(shù)與代數(shù)”領(lǐng)域,整式的乘除運(yùn)算和因式分解是基本而重要的代數(shù)初步知識(shí),在后續(xù)的數(shù)學(xué)學(xué)習(xí)中具有重要的意義。本章內(nèi)容建立在已經(jīng)學(xué)習(xí)了有理數(shù)的運(yùn)算,列簡(jiǎn)單的代數(shù)式、一次方程及不等式、整式的加減運(yùn)算等知識(shí)的基礎(chǔ)上,而本節(jié)課的知識(shí)是學(xué)習(xí)本章的基礎(chǔ),為后續(xù)章節(jié)的學(xué)習(xí)作鋪墊,因此,學(xué)得好壞直接關(guān)乎到后續(xù)章節(jié)的學(xué)習(xí)效果。
學(xué)情分析
本節(jié)課知識(shí)是學(xué)習(xí)整章的基礎(chǔ),因此,教學(xué)的好壞直接影響了后續(xù)章節(jié)的學(xué)習(xí)。學(xué)生在學(xué)習(xí)本章前,已經(jīng)掌握了用字母表示數(shù),列簡(jiǎn)單的代數(shù)式,掌握了乘方的意義及相關(guān)概念,并且本節(jié)課的知識(shí)相對(duì)較簡(jiǎn)單,學(xué)生比較容易理解和掌握,但是教師在教學(xué)中要注意引導(dǎo)學(xué)生導(dǎo)出同底數(shù)冪的乘法的.運(yùn)算性質(zhì)的過(guò)程是一個(gè)由特殊到一般的認(rèn)識(shí)過(guò)程,并且注意導(dǎo)出這一性質(zhì)的每一步的根據(jù)。
從學(xué)生做練習(xí)和作業(yè)來(lái)看,大部分學(xué)生都已經(jīng)掌握本節(jié)課的知識(shí),并且掌握的很好,但是還是存在一些問(wèn)題,那就是符號(hào)問(wèn)題,這方面還有待加強(qiáng)。
教學(xué)目標(biāo)
1、知識(shí)與技能:
掌握同底數(shù)冪乘法的運(yùn)算性質(zhì),能熟練運(yùn)用性質(zhì)進(jìn)行同底數(shù)冪乘法運(yùn)算。
2、過(guò)程與方法:
。1)通過(guò)同底數(shù)冪乘法性質(zhì)的推導(dǎo)過(guò)程,體會(huì)不完全歸納法的運(yùn)用,進(jìn)一步發(fā)展演繹推理能力;
。2)通過(guò)性質(zhì)運(yùn)用幫助學(xué)生理解字母表達(dá)式所代表的數(shù)量關(guān)系,進(jìn)一步積累選擇適當(dāng)?shù)某绦蚝退惴ń鉀Q用符號(hào)所表達(dá)問(wèn)題的經(jīng)驗(yàn)。
3、情感態(tài)度與價(jià)值觀:
。1)通過(guò)引例問(wèn)題情境的創(chuàng)設(shè),誘發(fā)學(xué)生的求知欲,進(jìn)一步認(rèn)識(shí)數(shù)學(xué)與生活的密切聯(lián)系;
。2)通過(guò)性質(zhì)的推導(dǎo)體會(huì)“特殊。
八年級(jí)數(shù)學(xué)的教案12
【教學(xué)目標(biāo)】
一、教學(xué)知識(shí)點(diǎn)
1.命題的組成。
2.命題真假的判斷。
二、能力訓(xùn)練要求:
1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假
2.通過(guò)舉例判定一個(gè)命題是假命題,使學(xué)生學(xué)會(huì)反面思考問(wèn)題的方法
三、情感與價(jià)值觀要求:
1.通過(guò)反例說(shuō)明假命題,使學(xué)生認(rèn)識(shí)到任何事情都是正反兩方面對(duì)立統(tǒng)一
2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣
3.通過(guò)對(duì)《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價(jià)值
【教學(xué)重點(diǎn)】準(zhǔn)確的找出命題的條件和結(jié)論
【教學(xué)難點(diǎn)】理解判斷一個(gè)真命題需要證明
【教學(xué)方法】探討、合作交流
【教具準(zhǔn)備】投影片
【教學(xué)過(guò)程】
一、情景創(chuàng)設(shè)、引入新課
師:如果這個(gè)星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個(gè)周日,我們郊游一定能成行嗎?為什么?
新課:
。1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。
1.如果兩個(gè)三角形的三條邊對(duì)應(yīng)相等,那么這兩個(gè)三角形全等。
2.如果一個(gè)四邊形的一組對(duì)邊平行且相等,那么這個(gè)四邊形是平行四邊形。
3.如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角相等。
4.如果一個(gè)四邊形的對(duì)角線相等,那么這個(gè)四邊形是矩形。
5.如果一個(gè)四邊形的兩條對(duì)角線相互垂直,那么這個(gè)四邊形是菱形。
師:由此可見(jiàn),每個(gè)命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng)。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。
二、例題講解:
例1:師:下列命題的條件是什么?結(jié)論是什么?
1.如果兩個(gè)角相等,那么他們是對(duì)頂角;
2.如果a>b,b>c,那么a=c;
3.兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等;
4.菱形的四條邊都相等;
5.全等三角形的面積相等。
例題教學(xué)建議:1:其中(1)、(2)請(qǐng)學(xué)生直接回答,(3)、(4)、(5)請(qǐng)學(xué)生分成小組交流然后回答。
2:有的命題的描述沒(méi)有用“如果……那么……”的形式,在分析時(shí)可以擴(kuò)展成這種形式,以分清條件和結(jié)論。
例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的`?與同伴交流。
師:正確的命題叫真命題,不正確的命題叫假命題。要說(shuō)明一個(gè)命題是假命題,通常可以舉一個(gè)例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。
教學(xué)建議:對(duì)于反例的要求可以采取啟發(fā)式層層遞進(jìn)方式給出,即:說(shuō)明命題錯(cuò)誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。
三、思維拓展:
拓展1.師:如何證實(shí)一個(gè)命題是真命題呢?請(qǐng)同學(xué)們分小組交流一下。
教學(xué)建議:不急于解決學(xué)生怎么證實(shí)真命題的問(wèn)題,可按以下程序設(shè)計(jì)教學(xué)過(guò)程
。1)首先給學(xué)生介紹歐幾里得的《原本》
。2)引出概念:公理、定理,證明
(3)啟發(fā)學(xué)生,現(xiàn)在如何證實(shí)一個(gè)命題的正確性
。4)給出本套教材所選用如下6個(gè)命題作為公理
。5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。
拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?
建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過(guò)長(zhǎng)期實(shí)踐驗(yàn)證的,不需要再進(jìn)行推理論證都承認(rèn)的真命題。定理是經(jīng)過(guò)推理論證的真命題。
練習(xí)書(shū)p197習(xí)題6.31
四、問(wèn)題式總結(jié)
師:經(jīng)過(guò)本節(jié)課我們?cè)谝黄鸸餐接懡涣,你了解了有關(guān)命題的哪些知識(shí)?
建議:可對(duì)學(xué)生進(jìn)行提示性引導(dǎo),如:命題的構(gòu)成特點(diǎn)、命題是否都正確、如何判斷一個(gè)命題是假命題、如何證實(shí)一個(gè)命題是真命題。
作業(yè):書(shū)p197習(xí)題6.32、3
板書(shū)設(shè)計(jì):
定義與命題
課時(shí)2
條件
1.命題的結(jié)構(gòu)特征
結(jié)論
1.假命題——可以舉反例
2.命題真假的判別
2.真命題——需要證明學(xué)生活動(dòng)一——
探索命題的結(jié)構(gòu)特征
學(xué)生觀察、分組討論,得出結(jié)論:
。1)這五個(gè)命題都是用“如果……那么……”形式敘述的
。2)這五個(gè)命題都是由已知得到結(jié)論
(3)這五個(gè)命題都有條件和結(jié)論
學(xué)生活動(dòng)二——
探索命題的條件和結(jié)論
生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個(gè)三角形兩角和其中一角對(duì)邊對(duì)應(yīng)相等是條件,那么這兩個(gè)三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。
學(xué)生活動(dòng)三
探索命題的真假——如何判斷假命題
生:可以舉一個(gè)例子,說(shuō)明命題1是不正確的,如圖:
已知:∠AOB,∠1=∠2,∠1,∠2不是對(duì)頂角
生:命題2,若a=10,b=8,c=5,此時(shí)a>b,b>c,但a≠c
生:由此說(shuō)明:命題1、2是不正確的
生:命題3、4、5是正確的
學(xué)生活動(dòng)四
探索命題的真假——如何證實(shí)一個(gè)命題是真命題
學(xué)生交流:
生:用我們以前學(xué)過(guò)的觀察、實(shí)驗(yàn)、驗(yàn)證特例等方法
生:這些方法往往并不可靠
生:能夠根據(jù)已知道的真命題證實(shí)呢?
生:那已經(jīng)知道的真命題又是如何證實(shí)的?
生:那可怎么辦呢?
生:可通過(guò)證明的方法
學(xué)生分小組討論得出結(jié)論
生:命題的結(jié)構(gòu)特征:條件和結(jié)論
生:命題有真假之分
生:可以通過(guò)舉反例的方法判斷假命題
生:可通過(guò)證明的方法證實(shí)真命題
八年級(jí)數(shù)學(xué)的教案13
【教學(xué)目標(biāo)】
知識(shí)目標(biāo):
解單項(xiàng)式乘以多項(xiàng)式的意義,理解單項(xiàng)式與多項(xiàng)式的乘法法則,會(huì)進(jìn)行單項(xiàng)式與多項(xiàng)式的乘法運(yùn)算。
能力目標(biāo):
(1)經(jīng)歷探索乘法運(yùn)算法則的過(guò)程,發(fā)展觀察、歸納、猜測(cè)、驗(yàn)證等能力;
。2)體會(huì)乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。
情感目標(biāo):
充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性、主動(dòng)性
【教學(xué)重點(diǎn)】
單項(xiàng)式與多項(xiàng)式的乘法運(yùn)算
【教學(xué)難點(diǎn)】
推測(cè)整式乘法的運(yùn)算法則。
【教學(xué)過(guò)程】
一、復(fù)習(xí)引入
通過(guò)對(duì)已學(xué)知識(shí)的復(fù)習(xí)引入課題(學(xué)生作答)
1.請(qǐng)說(shuō)出單項(xiàng)式與單項(xiàng)式相乘的法則:
單項(xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里出現(xiàn)的字母,則連同它的指數(shù)作為積的`一個(gè)因式。
。ㄏ禂(shù)×系數(shù))×(同字母冪相乘)×單獨(dú)的冪
例如:( 2a2b3c) (-3ab)
解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c
= -6a3b4c
2.說(shuō)出多項(xiàng)式2x2-3x-1的項(xiàng)和各項(xiàng)的系數(shù)項(xiàng)分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1
問(wèn):如何計(jì)算單項(xiàng)式與多項(xiàng)式相乘?例如:2a2· (3a2 - 5b)該怎樣計(jì)算?
這便是我們今天要研究的問(wèn)題。
二、新知探究
已知一長(zhǎng)方形長(zhǎng)為(a+b+c),寬為m,則面積為:m(a+b+c)
現(xiàn)將這個(gè)長(zhǎng)方形分割為寬為m,長(zhǎng)分別為a、b、c的三個(gè)小長(zhǎng)方形,其面積之和為ma+mb+mc因?yàn)榉指钋昂箝L(zhǎng)方形沒(méi)變所以m(a+b+c)=ma+mb+mc
上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則該如何表述?(學(xué)生分組討論:前后座為一組;找個(gè)別同學(xué)作答,教師作評(píng))
結(jié)論單項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則:
用單項(xiàng)式分別去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
用字母表示為:m(a+b+c)=ma+mb+mc
運(yùn)算思路:單×多
轉(zhuǎn)化
分配律
單×單
三、例題講解
例計(jì)算:(1)(-2a2)· (3ab2– 5ab3)
。2)(- 4x) ·(2x2+3x-1)
解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②
(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①
八年級(jí)數(shù)學(xué)的教案14
知識(shí)結(jié)構(gòu):
重點(diǎn)與難點(diǎn)分析:
本節(jié)內(nèi)容的重點(diǎn)是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點(diǎn).推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.
本節(jié)內(nèi)容的難點(diǎn)是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時(shí)候,經(jīng);煜,幫助學(xué)生認(rèn)識(shí)判定與性質(zhì)的區(qū)別,這是本節(jié)的難點(diǎn).另外本節(jié)的文字?jǐn)⑹鲱}也是難點(diǎn)之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法.由于知識(shí)點(diǎn)的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時(shí)從條件得到用哪個(gè)定理及如何用.
教法建議:
本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過(guò)多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵(lì)學(xué)生討論解決問(wèn)題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說(shuō)明如下:
(1)參與探索發(fā)現(xiàn),領(lǐng)略知識(shí)形成過(guò)程
學(xué)生學(xué)習(xí)過(guò)互逆命題和互逆定理的概念,首先提出問(wèn)題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來(lái)問(wèn):此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言.最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學(xué)生親自動(dòng)手實(shí)踐,積極參與發(fā)現(xiàn),滿打滿算了學(xué)生的認(rèn)識(shí)沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會(huì),對(duì)定理的產(chǎn)生過(guò)程,真正做到心領(lǐng)神會(huì)。
(2)采用“類比”的學(xué)習(xí)方法,獲取知識(shí)。
由性質(zhì)定理的學(xué)習(xí),我們得到了幾個(gè)推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結(jié)論或者說(shuō)哪些推論呢?這里先讓學(xué)生發(fā)表意見(jiàn),然后大家共同分析討論,把一些有價(jià)值的、甚至就是教材中的推論板書(shū)出來(lái)。如果學(xué)生提到的不完整,教師可以做適當(dāng)?shù)狞c(diǎn)撥引導(dǎo)。
(3)總結(jié),形成知識(shí)結(jié)構(gòu)
為了使學(xué)生對(duì)本節(jié)課有一個(gè)完整的認(rèn)識(shí),便于今后的應(yīng)用,教師提出如下問(wèn)題,讓學(xué)生思考回答:(1)怎樣判定一個(gè)三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個(gè)三角形是等邊三角形?
一.教學(xué)目標(biāo):
1.使學(xué)生掌握等腰三角形的判定定理及其推論;
2.掌握等腰三角形判定定理的運(yùn)用;
3.通過(guò)例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問(wèn)題解決問(wèn)題的能力;
4.通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;
5.通過(guò)知識(shí)的縱橫遷移感受數(shù)學(xué)的辯證特征.
二.教學(xué)重點(diǎn):等腰三角形的判定定理
三.教學(xué)難點(diǎn):性質(zhì)與判定的區(qū)別
四.教學(xué)用具:直尺,微機(jī)
五.教學(xué)方法:以學(xué)生為主體的討論探索法
六.教學(xué)過(guò)程:
1、新課背景知識(shí)復(fù)習(xí)
(1)請(qǐng)同學(xué)們說(shuō)出互逆命題和互逆定理的概念
估計(jì)學(xué)生能用自己的語(yǔ)言說(shuō)出,這里重點(diǎn)復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。
(2)等腰三角形的性質(zhì)定理的`內(nèi)容是什么?并檢驗(yàn)它的逆命題是否為真命題?
啟發(fā)學(xué)生用自己的語(yǔ)言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:
1.等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等.
(簡(jiǎn)稱“等角對(duì)等邊”).
由學(xué)生說(shuō)出已知、求證,使學(xué)生進(jìn)一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言的方法.
已知:如圖,△ABC中,∠B=∠C.
求證:AB=AC.
教師可引導(dǎo)學(xué)生分析:
聯(lián)想證有關(guān)線段相等的知識(shí)知道,先需構(gòu)成以AB、AC為對(duì)應(yīng)邊的全等三角形.因?yàn)橐阎螧=∠C,沒(méi)有對(duì)應(yīng)相等邊,所以需添輔助線為兩個(gè)三角形的公共邊,因此輔助線應(yīng)從A點(diǎn)引起.再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.
注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.
(2)不能說(shuō)“一個(gè)三角形兩底角相等,那么兩腰邊相等”,因?yàn)檫未判定它是一個(gè)等腰三角形.
(3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系.
2.推論1:三個(gè)角都相等的三角形是等邊三角形.
推論2:有一個(gè)角等于60°的等腰三角形是等邊三角形.
要讓學(xué)生自己推證這兩條推論.
小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.
證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.
3.應(yīng)用舉例
例1.求證:如果三角形一個(gè)外角的平分線平行于三角形的一邊,那么這個(gè)三角形是等腰三角形.
分析:讓學(xué)生畫(huà)圖,寫出已知求證,啟發(fā)學(xué)生遇到已知中有外角時(shí),常常考慮應(yīng)用外角的兩個(gè)特性①它與相鄰的內(nèi)角互補(bǔ);②它等于與它不相鄰的兩個(gè)內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因?yàn)橐阎?=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系.
已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.
求證:AB=AC.
證明:(略)由學(xué)生板演即可.
補(bǔ)充例題:(投影展示)
1.已知:如圖,AB=AD,∠B=∠D.
求證:CB=CD.
分析:解具體問(wèn)題時(shí)要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個(gè)以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.
證明:連結(jié)BD,在 中, (已知)
(等邊對(duì)等角)
(已知)
即
(等教對(duì)等邊)
小結(jié):求線段相等一般在三角形中求解,添加適當(dāng)?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系.
2.已知,在 中, 的平分線與 的外角平分線交于D,過(guò)D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.
分析:對(duì)于三個(gè)線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個(gè)角平分線和平行線,可以通過(guò)角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論.
證明: DE//BC(已知)
,
BE=DE,同理DF=CF.
EF=DE-DF
EF=BE-CF
小結(jié):
(1)等腰三角形判定定理及推論.
(2)等腰三角形和等邊三角形的證法.
七.練習(xí)
教材 P.75中1、2、3.
八.作業(yè)
教材 P.83 中 1.1)、2)、3);2、3、4、5.
九.板書(shū)設(shè)計(jì)
八年級(jí)數(shù)學(xué)的教案15
教學(xué)目標(biāo):
1、掌握一次函數(shù)解析式的特點(diǎn)及意義
2、知道一次函數(shù)與正比例函數(shù)的關(guān)系
3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律
教學(xué)重點(diǎn):
1、 一次函數(shù)解析式特點(diǎn)
2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律
教學(xué)難點(diǎn):
1、一次函數(shù)與正比例函數(shù)關(guān)系
2、根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。
教學(xué)過(guò)程:
、瘢岢鰡(wèn)題,創(chuàng)設(shè)情境
問(wèn)題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時(shí).已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.
分析 我們知道汽車距北京的路程隨著行車時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們?cè)O(shè)汽車在高速公路上行駛時(shí)間為t小時(shí),汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是
s=570-95t.
說(shuō)明 找出問(wèn)題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.
問(wèn)題2 小張準(zhǔn)備將平時(shí)的零用錢節(jié)約一些儲(chǔ)存起來(lái).他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫出小張的`存款與從現(xiàn)在開(kāi)始的月份之間的函數(shù)關(guān)系式.
分析 我們?cè)O(shè)從現(xiàn)在開(kāi)始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.
問(wèn)題3 以上問(wèn)題1和問(wèn)題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?
、颍畬(dǎo)入新課
上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱
y是x的正比例函數(shù)。
例1:下列函數(shù)中,y是x的一次函數(shù)的是( )
、賧=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?
(1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);
(2)長(zhǎng)為8(cm)的平行四邊形的周長(zhǎng)L(cm)與寬b(cm);
(3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;
(4)汽車每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).
。5)汽車以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;
(6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;
(7)一棵樹(shù)現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹(shù)的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過(guò)整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h
(2)L=2b+16,L是b的一次函數(shù).
(3)y=150-5x,y是x的一次函數(shù).
(4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).
。5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);
(6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);
。7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)
例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.
分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.
例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)y與x之間是什么函數(shù)關(guān)系;
(3)求x=2.5時(shí),y的值.
解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).
又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函數(shù).
(3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.
1. 2
例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時(shí)12千米的速度從A地出發(fā),經(jīng)過(guò)B地到達(dá)C地.設(shè)此人騎行時(shí)間為x(時(shí)),離B地距離為y(千米).
(1)當(dāng)此人在A、B兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.
(2)當(dāng)此人在B、C兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.
分析 (1)當(dāng)此人在A、B兩地之間時(shí),離B地距離y為A、B兩地的距離與某人所走的路程的差.
(2)當(dāng)此人在B、C兩地之間時(shí),離B地距離y為某人所走的路程與A、B兩地的距離的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油庫(kù)有一沒(méi)儲(chǔ)油的儲(chǔ)油罐,在開(kāi)始的8分鐘時(shí)間內(nèi),只開(kāi)進(jìn)油管,不開(kāi)出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開(kāi)16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開(kāi)出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫出這段時(shí)間內(nèi)油罐的儲(chǔ)油量y(噸)與進(jìn)出油時(shí)間x(分)的函數(shù)式及相應(yīng)的x取值范圍.
分析 因?yàn)樵谥淮蜷_(kāi)進(jìn)油管的8分鐘內(nèi)、后又打開(kāi)進(jìn)油管和出油管的16分鐘和最后的只開(kāi)出油管的三個(gè)階級(jí)中,儲(chǔ)油罐的儲(chǔ)油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來(lái)考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.
解 在第一階段:y=3x(0≤x≤8);
在第二階段:y=16+x(8≤x≤16);
在第三階段:y=-2x+88(24≤x≤44).
、螅S堂練習(xí)
根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?
2、為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過(guò)6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過(guò)6米3時(shí),超過(guò)部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫出每月用水量不
超過(guò)6米3和超過(guò)6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]
、簦n時(shí)小結(jié)
1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2、能根據(jù)已知簡(jiǎn)單信息,寫出一次函數(shù)的表達(dá)式。
、酰n后作業(yè)
1、已知y-3與x成正比例,且x=2時(shí),y=7
(1)寫出y與x之間的函數(shù)關(guān)系.
(2)y與x之間是什么函數(shù)關(guān)系.
(3)計(jì)算y=-4時(shí)x的值.
2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.
3.倉(cāng)庫(kù)內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉(cāng)庫(kù)內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.
4.今年植樹(shù)節(jié),同學(xué)們種的樹(shù)苗高約1.80米.據(jù)介紹,這種樹(shù)苗在10年內(nèi)平均每年長(zhǎng)高0.35米.求樹(shù)高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹(shù)約有多高.
5.按照我國(guó)稅法規(guī)定:個(gè)人月收入不超過(guò)800元,免交個(gè)人所得稅.超過(guò)800元不超過(guò)1300元部分需繳納5%的個(gè)人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.
【八年級(jí)數(shù)學(xué)的教案】相關(guān)文章:
數(shù)學(xué)八年級(jí)上冊(cè)教案03-02
有關(guān)八年級(jí)數(shù)學(xué)教案八年級(jí)數(shù)學(xué)教案全套10-03
八年級(jí)數(shù)學(xué)下冊(cè)教案01-10
初中數(shù)學(xué)八年級(jí)上冊(cè)教案02-06
八年級(jí)數(shù)學(xué)上冊(cè)教案02-27
八年級(jí)數(shù)學(xué)教案優(yōu)秀07-27