高一數(shù)學(xué)教案【精】
作為一名優(yōu)秀的教育工作者,通常需要準(zhǔn)備好一份教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。怎樣寫(xiě)教案才更能起到其作用呢?下面是小編為大家收集的高一數(shù)學(xué)教案,歡迎大家分享。
高一數(shù)學(xué)教案1
學(xué) 習(xí) 目 標(biāo)
1明確空間直角坐標(biāo)系是如何建立;明確空間中任意一點(diǎn)如何表示;
2 能夠在空間直角坐標(biāo)系中求出點(diǎn)坐標(biāo)
教 學(xué) 過(guò) 程
一 自 主 學(xué) 習(xí)
1平面直角坐標(biāo)系建立方法,點(diǎn)坐標(biāo)確定過(guò)程、表示方法?
2一個(gè)點(diǎn)在平面怎么表示?在空間呢?
3關(guān)于一些對(duì)稱點(diǎn)坐標(biāo)求法
關(guān)于坐標(biāo)平面 對(duì)稱點(diǎn) ;
關(guān)于坐標(biāo)平面 對(duì)稱點(diǎn) ;
關(guān)于坐標(biāo)平面 對(duì)稱點(diǎn) ;
關(guān)于 軸對(duì)稱點(diǎn) ;
關(guān)于 對(duì)軸稱點(diǎn) ;
關(guān)于 軸對(duì)稱點(diǎn) ;
二 師 生 互動(dòng)
例1在長(zhǎng)方體 中, , 寫(xiě)出 四點(diǎn)坐標(biāo)
討論:若以 點(diǎn)為原點(diǎn),以射線 方向分別為 軸,建立空間直角坐標(biāo)系,則各頂點(diǎn)坐標(biāo)又是怎樣呢?
變式:已知 ,描出它在空間位置
例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標(biāo)系,并確定各頂點(diǎn)坐標(biāo)
練1 建立適當(dāng)直角坐標(biāo)系,確定棱長(zhǎng)為3正四面體各頂點(diǎn)坐標(biāo)
練2 已知 是棱長(zhǎng)為2正方體, 分別為 和 中點(diǎn),建立適當(dāng)空間直角坐標(biāo)系,試寫(xiě)出圖中各中點(diǎn)坐標(biāo)
三 鞏 固 練 習(xí)
1 關(guān)于空間直角坐標(biāo)系敘述正確是( )
A 中 位置是可以互換
B空間直角坐標(biāo)系中點(diǎn)與一個(gè)三元有序數(shù)組是一種一一對(duì)應(yīng)關(guān)系
C空間直角坐標(biāo)系中三條坐標(biāo)軸把空間分為八個(gè)部分
D某點(diǎn)在不同空間直角坐標(biāo)系中坐標(biāo)位置可以相同
2 已知點(diǎn) ,則點(diǎn) 關(guān)于原點(diǎn)對(duì)稱點(diǎn)坐標(biāo)為( )
A B C D
3 已知 三個(gè)頂點(diǎn)坐標(biāo)分別為 ,則 重心坐標(biāo)為( )
A B C D
4 已知 為平行四邊形,且 , 則頂點(diǎn) 坐標(biāo)
5 方程 幾何意義是
四 課 后 反 思
五 課 后 鞏 固 練 習(xí)
1 在空間直角坐標(biāo)系中,給定點(diǎn) ,求它分別關(guān)于坐標(biāo)平面,坐標(biāo)軸和原點(diǎn)對(duì)稱點(diǎn)坐標(biāo)
2 設(shè)有長(zhǎng)方體 ,長(zhǎng)、寬、高分別為 是線段 中點(diǎn)分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標(biāo)系
⑴求 坐標(biāo);
⑵求 坐標(biāo);
高一數(shù)學(xué)教案2
一、教學(xué)目標(biāo)
。1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;
。2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
。3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;
(4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;
。5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;
。6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.
二、教學(xué)重點(diǎn)難點(diǎn):
重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.
三、教學(xué)過(guò)程
1.新課導(dǎo)入
在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的.重要方面.?dāng)?shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).
初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書(shū):命題.)
(從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)
學(xué)生舉例:平行四邊形的對(duì)角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)
。ㄍ瑢W(xué)議論結(jié)果,答案是肯定的.)
教師提問(wèn):什么是命題?
。▽W(xué)生進(jìn)行回憶、思考.)
概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.
。ń處熆隙送瑢W(xué)的回答,并作板書(shū).)
由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
。ń處熇猛队捌蛯W(xué)生討論以下問(wèn)題.)
例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:
命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題.
初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).
2.講授新課
大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內(nèi)容主要講了哪些問(wèn)題?
。ㄆ毯笳(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)
。1)什么叫做命題?
可以判斷真假的語(yǔ)句叫做命題.
判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如 x2-5x+6=0
中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).
(2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.
命題可分為簡(jiǎn)單命題和復(fù)合命題.
不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.
。4)命題的表示:用p ,q ,r ,s ,……來(lái)表示.
。ń處煾鶕(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)
我們接觸的復(fù)合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.
給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.
對(duì)于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .
在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.
。1)5 ;
。2)0.5非整數(shù);
。3)內(nèi)錯(cuò)角相等,兩直線平行;
。4)菱形的對(duì)角線互相垂直且平分;
。5)平行線不相交;
(6)若ab=0 ,則a=0 .
。ㄗ寣W(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)
高一數(shù)學(xué)教案3
本文題目:高一數(shù)學(xué)教案:函數(shù)的奇偶性
課題:1.3.2函數(shù)的奇偶性
一、三維目標(biāo):
知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。
過(guò)程與方法:通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推斷的能力。
情感態(tài)度與價(jià)值觀:通過(guò)繪制和展示優(yōu)美的函數(shù)圖象來(lái)陶冶學(xué)生的情操. 通過(guò)組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。
二、學(xué)習(xí)重、難點(diǎn):
重點(diǎn):函數(shù)的奇偶性的概念。
難點(diǎn):函數(shù)奇偶性的判斷。
三、學(xué)法指導(dǎo):
學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過(guò)程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。
四、知識(shí)鏈接:
1.復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱圖形和中心對(duì)稱圖形的定義:
2.分別畫(huà)出函數(shù)f (x) =x3與g (x) = x2的圖象,并說(shuō)出圖象的對(duì)稱性。
五、學(xué)習(xí)過(guò)程:
函數(shù)的奇偶性:
(1)對(duì)于函數(shù) ,其定義域關(guān)于原點(diǎn)對(duì)稱:
如果______________________________________,那么函數(shù) 為奇函數(shù);
如果______________________________________,那么函數(shù) 為偶函數(shù)。
(2)奇函數(shù)的'圖象關(guān)于__________對(duì)稱,偶函數(shù)的圖象關(guān)于_________對(duì)稱。
(3)奇函數(shù)在對(duì)稱區(qū)間的增減性 ;偶函數(shù)在對(duì)稱區(qū)間的增減性 。
六、達(dá)標(biāo)訓(xùn)練:
A1、判斷下列函數(shù)的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;
(3)f(x)=x+ (4)f(x)=
A2、二次函數(shù) ( )是偶函數(shù),則b=___________ .
B3、已知 ,其中 為常數(shù),若 ,則
_______ .
B4、若函數(shù) 是定義在R上的奇函數(shù),則函數(shù) 的圖象關(guān)于 ( )
(A) 軸對(duì)稱 (B) 軸對(duì)稱 (C)原點(diǎn)對(duì)稱 (D)以上均不對(duì)
B5、如果定義在區(qū)間 上的函數(shù) 為奇函數(shù),則 =_____ .
C6、若函數(shù) 是定義在R上的奇函數(shù),且當(dāng) 時(shí), ,那么當(dāng)
時(shí), =_______ .
D7、設(shè) 是 上的奇函數(shù), ,當(dāng) 時(shí), ,則 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定義在 上的奇函數(shù) ,則常數(shù) ____ , _____ .
七、學(xué)習(xí)小結(jié):
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。
八、課后反思:
高一數(shù)學(xué)教案4
一、教材
《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點(diǎn)內(nèi)容之一。從知識(shí)體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)揭示了知識(shí)的發(fā)生過(guò)程以及相關(guān)知識(shí)間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過(guò)直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過(guò)程中掌握了點(diǎn)的坐標(biāo)、直線的方程、圓的方程以及點(diǎn)到直線的距離公式;掌握利用方程組的方法來(lái)求直線的交點(diǎn);具有用坐標(biāo)法研究點(diǎn)與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。
三、教學(xué)目標(biāo)
(一)知識(shí)與技能目標(biāo)
能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線的距離的方法簡(jiǎn)單判斷出直線與圓的關(guān)系。
(二)過(guò)程與方法目標(biāo)
經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價(jià)值觀目標(biāo)
激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識(shí)、總結(jié)規(guī)律的能力,解題時(shí)養(yǎng)成歸納總結(jié)的良好習(xí)慣。
四、教學(xué)重難點(diǎn)
(一)重點(diǎn)
用解析法研究直線與圓的位置關(guān)系。
(二)難點(diǎn)
體會(huì)用解析法解決問(wèn)題的數(shù)學(xué)思想。
五、教學(xué)方法
根據(jù)本節(jié)課教材內(nèi)容的特點(diǎn),為了更直觀、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫(huà)板為平臺(tái),通過(guò)圖形的動(dòng)態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機(jī)會(huì),同時(shí)有利于發(fā)揮各層次學(xué)生的作用,教師始終堅(jiān)持啟發(fā)式教學(xué)原則,設(shè)計(jì)一系列問(wèn)題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動(dòng)。
六、教學(xué)過(guò)程
(一)導(dǎo)入新課
教師借助多媒體創(chuàng)設(shè)泰坦尼克號(hào)的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個(gè)半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問(wèn),輪船如何航行能夠避免撞到冰山呢?如何行駛便又會(huì)撞到冰山呢?
教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡(jiǎn)圖,即相交、相切、相離。
設(shè)計(jì)意圖:在已有的知識(shí)基礎(chǔ)上,提出新的問(wèn)題,有利于保持學(xué)生知識(shí)結(jié)構(gòu)的連續(xù)性,同時(shí)開(kāi)闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。
(二)新課教學(xué)——探究新知
教師提問(wèn)如何判斷直線與圓的位置關(guān)系,學(xué)生先獨(dú)立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個(gè)交流討論中,教師既要有對(duì)正確認(rèn)識(shí)的`贊賞,又要有對(duì)錯(cuò)誤見(jiàn)解的分析及對(duì)該學(xué)生的鼓勵(lì)。
判斷方法:
(1)定義法:看直線與圓公共點(diǎn)個(gè)數(shù)
即研究方程組解的個(gè)數(shù),具體做法是聯(lián)立兩個(gè)方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進(jìn)一步拋出疑問(wèn),對(duì)比兩種方法,由學(xué)生觀察實(shí)踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。
已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。
當(dāng)已知了直線與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問(wèn)題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點(diǎn)到直線的距離,便可以直接利用點(diǎn)到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點(diǎn)的方法,聯(lián)立直線與圓的方程,組成方程組,通過(guò)方程組解得個(gè)數(shù)確定直線與圓的交點(diǎn)個(gè)數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結(jié)——鞏固新知
為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:
可由方程組的解的不同情況來(lái)判斷:
當(dāng)方程組有兩組實(shí)數(shù)解時(shí),直線l與圓C相交;
當(dāng)方程組有一組實(shí)數(shù)解時(shí),直線l與圓C相切;
當(dāng)方程組沒(méi)有實(shí)數(shù)解時(shí),直線l與圓C相離。
活動(dòng):我將抽取兩位同學(xué)在黑板上扮演,并在巡視過(guò)程中對(duì)部分學(xué)生加以指導(dǎo)。最后對(duì)黑板上的兩名學(xué)生的解題過(guò)程加以分析完善。通過(guò)對(duì)基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個(gè)學(xué)生獲得后續(xù)學(xué)習(xí)的信心。
(五)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會(huì)以口頭提問(wèn)的方式:
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問(wèn)題的解決過(guò)程中運(yùn)用了哪些數(shù)學(xué)思想?
設(shè)計(jì)意圖:?jiǎn)l(fā)式的課堂小結(jié)方式能讓學(xué)生主動(dòng)回顧本節(jié)課所學(xué)的知識(shí)點(diǎn)。也促使學(xué)生對(duì)知識(shí)網(wǎng)絡(luò)進(jìn)行主動(dòng)建構(gòu)。
作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對(duì)比兩種解法,那種更簡(jiǎn)捷,明確本節(jié)課主要用比較d與r的關(guān)系來(lái)解決這類問(wèn)題,對(duì)用方程組解的個(gè)數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報(bào)。
七、板書(shū)設(shè)計(jì)
我的板書(shū)本著簡(jiǎn)介、直觀、清晰的原則,這就是我的板書(shū)設(shè)計(jì)。
高一數(shù)學(xué)教案5
學(xué)習(xí)目標(biāo)
1.能根據(jù)拋物線的定義建立拋物線的標(biāo)準(zhǔn)方程;
2.會(huì)根據(jù)拋物線的標(biāo)準(zhǔn)方程寫(xiě)出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程;
3.會(huì)求拋物線的標(biāo)準(zhǔn)方程。
一、預(yù)習(xí)檢查
1.完成下表:
標(biāo)準(zhǔn)方程
圖形
焦點(diǎn)坐標(biāo)
準(zhǔn)線方程
開(kāi)口方向
2.求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程.
3.求經(jīng)過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.
二、問(wèn)題探究
探究1:回顧拋物線的定義,依據(jù)定義,如何建立拋物線的標(biāo)準(zhǔn)方程?
探究2:方程是拋物線的標(biāo)準(zhǔn)方程嗎?試將其與拋物線的標(biāo)準(zhǔn)方程辨析比較.
例1.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在直線上,求拋物線的方程.
例2.已知拋物線的焦點(diǎn)在軸上,點(diǎn)是拋物線上的一點(diǎn),到焦點(diǎn)的'距離是5,求的值及拋物線的標(biāo)準(zhǔn)方程,準(zhǔn)線方程.
例3.拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為軸,它與圓相交,公共弦的長(zhǎng)為.求該拋物線的方程,并寫(xiě)出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程.
三、思維訓(xùn)練
1.在平面直角坐標(biāo)系中,若拋物線上的點(diǎn)到該拋物線的焦點(diǎn)的距離為6,則點(diǎn)的橫坐標(biāo)為.
2.拋物線的焦點(diǎn)到其準(zhǔn)線的距離是.
3.設(shè)為拋物線的焦點(diǎn),為該拋物線上三點(diǎn),若,則=.
4.若拋物線上兩點(diǎn)到焦點(diǎn)的距離和為5,則線段的中點(diǎn)到軸的距離是.
5.(理)已知拋物線,有一個(gè)內(nèi)接直角三角形,直角頂點(diǎn)在原點(diǎn),斜邊長(zhǎng)為,一直角邊所在直線方程是,求此拋物線的方程。
四、課后鞏固
1.拋物線的準(zhǔn)線方程是.
2.拋物線上一點(diǎn)到焦點(diǎn)的距離為,則點(diǎn)到軸的距離為.
3.已知拋物線,焦點(diǎn)到準(zhǔn)線的距離為,則.
4.經(jīng)過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為.
5.頂點(diǎn)在原點(diǎn),以雙曲線的焦點(diǎn)為焦點(diǎn)的拋物線方程是.
6.拋物線的頂點(diǎn)在原點(diǎn),以軸為對(duì)稱軸,過(guò)焦點(diǎn)且傾斜角為的直線被拋物線所截得的弦長(zhǎng)為8,求拋物線的方程.
7.若拋物線上有一點(diǎn),其橫坐標(biāo)為,它到焦點(diǎn)的距離為10,求拋物線方程和點(diǎn)的坐標(biāo)。
高一數(shù)學(xué)教案6
一、 教學(xué)目標(biāo)
1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負(fù)符號(hào)判斷);了解任意角的余切、正割、余割函數(shù)的定義.
2.經(jīng)歷從銳角三角函數(shù)定義過(guò)度到任意角三角函數(shù)定義的推廣過(guò)程,體驗(yàn)三角函數(shù)概念的產(chǎn)生、發(fā)展過(guò)程. 領(lǐng)悟直角坐標(biāo)系的工具功能,豐富數(shù)形結(jié)合的經(jīng)驗(yàn).
3.培養(yǎng)學(xué)生通過(guò)現(xiàn)象看本質(zhì)的唯物主義認(rèn)識(shí)論觀點(diǎn),滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀.
4.培養(yǎng)學(xué)生求真務(wù)實(shí)、實(shí)事求是的科學(xué)態(tài)度.
二、 重點(diǎn)、難點(diǎn)、關(guān)鍵
重點(diǎn):任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負(fù))符號(hào)判斷法.
難點(diǎn):把三角函數(shù)理解為以實(shí)數(shù)為自變量的函數(shù).
關(guān)鍵:如何想到建立直角坐標(biāo)系;六個(gè)比值的確定性( α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).
三、 教學(xué)理念和方法
教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程.
根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué).
四、 教學(xué)過(guò)程
[執(zhí)教線索:
回想再認(rèn):函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關(guān)系)——問(wèn)題情境:能推廣到任意角嗎?——它山之石:建立直角坐標(biāo)系(為何?)——優(yōu)化認(rèn)知:用直角坐標(biāo)系研究銳角三角函數(shù)——探索發(fā)展:對(duì)任意角研究六個(gè)比值(與角之間的關(guān)系:確定性、依賴性,滿足函數(shù)定義嗎?)——自主定義:任意角三角函數(shù)定義——登高望遠(yuǎn):三角函數(shù)的要素分析(對(duì)應(yīng)法則、定義域、值域與正負(fù)符號(hào)判定)——例題與練習(xí)——回顧小結(jié)——布置作業(yè)]
(一)復(fù)習(xí)引入、回想再認(rèn)
開(kāi)門(mén)見(jiàn)山,面對(duì)全體學(xué)生提問(wèn):
在初中我們初步學(xué)習(xí)了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學(xué)習(xí)了角度制和弧度制,這節(jié)課該研究什么呢?
探索任意角的三角函數(shù)(板書(shū)課題),請(qǐng)同學(xué)們回想,再明確一下:
(情景1)什么叫函數(shù)?或者說(shuō)函數(shù)是怎樣定義的?
讓學(xué)生回想后再點(diǎn)名回答,投影顯示規(guī)范的定義,教師根據(jù)回答情況進(jìn)行修正、強(qiáng)調(diào):
傳統(tǒng)定義:設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x與,如果對(duì)于x的每一個(gè)值,都有唯一確定的'值和它對(duì)應(yīng),那么就說(shuō)是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域.
現(xiàn)代定義:設(shè)A、B是非空的數(shù)集,如果按某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù),在集合B中都有唯一確定的數(shù) f(x)和它對(duì)應(yīng),那么就稱映射?:A→B為從集合A到集合B的一個(gè)函數(shù),記作:= f(x),x∈A ,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域.
高一數(shù)學(xué)教案7
一、課標(biāo)要求:
理解充分條件、必要條件與充要條件的意義,會(huì)判斷充分條件、必要條件與充要條件.
二、知識(shí)與方法回顧:
1、充分條件、必要條件與充要條件的概念:
2、從邏輯推理關(guān)系上看充分不必要條件、必要不充分條件與充要條件:
3、從集合與集合之間關(guān)系上看充分條件、必要條件與充要條件:
4、特殊值法:判斷充分條件與必要條件時(shí),往往用特殊值法來(lái)否定結(jié)論
5、化歸思想:
表示p等價(jià)于q,等價(jià)命題可以進(jìn)行相互轉(zhuǎn)化,當(dāng)我們要證明p成立時(shí),就可以轉(zhuǎn)化為證明q成立;
這里要注意原命題 逆否命題、逆命題 否命題只是等價(jià)形式之一,對(duì)于條件或結(jié)論是不等式關(guān)系(否定式)的命題一般應(yīng)用化歸思想.
6、數(shù)形結(jié)合思想:
利用韋恩圖(即集合的包含關(guān)系)來(lái)判斷充分不必要條件,必要不充分條件,充要條件.
三、基礎(chǔ)訓(xùn)練:
1、 設(shè)命題若p則q為假,而若q則p為真,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、 設(shè)集合M,N為是全集U的兩個(gè)子集,則 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
3、 若 是實(shí)數(shù),則 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
四、例題講解
例1 已知實(shí)系數(shù)一元二次方程 ,下列結(jié)論中正確的是 ( )
(1) 是這個(gè)方程有實(shí)根的充分不必要條件
(2) 是這個(gè)方程有實(shí)根的必要不充分條件
(3) 是這個(gè)方程有實(shí)根的充要條件
(4) 是這個(gè)方程有實(shí)根的充分不必要條件
A.(1)(3) B.(3)(4) C.(1)(3)(4) D.(2)(3)(4)
例2 (1)已知h 0,a,bR,設(shè)命題甲: ,命題乙: 且 ,問(wèn)甲是乙的 ( )
(2)已知p:兩條直線的斜率互為負(fù)倒數(shù),q:兩條直線互相垂直,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
變式:a = 0是直線 與 平行的 條件;
例3 如果命題p、q都是命題r的必要條件,命題s是命題r的`充分條件,命題q是命題s
的充分條件,那么命題p是命題q的 條件;命題s是命題q的 條件;命題r是命題q的 條件.
例4 設(shè)命題p:|4x-3| 1,命題q:x2-(2a+1)x+a(a+1) 0,若﹁p是﹁q的必要不充分條件,求實(shí)數(shù)a的取值范圍;
例5 設(shè) 是方程 的兩個(gè)實(shí)根,試分析 是兩實(shí)根 均大于1的什么條件?并給予證明.
五、課堂練習(xí)
1、設(shè)命題p: ,命題q: ,則p是q的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、給出以下四個(gè)命題:①若p則q②若﹁r則﹁q③ 若r則﹁s
、苋籀鑣則q若它們都是真命題,則﹁p是s的 條件;
3、是否存在實(shí)數(shù)p,使 是 的充分條件?若存在,求出p的取值范圍;若不存在說(shuō)明理由.
六、課堂小結(jié):
七、教學(xué)后記:
高三 班 學(xué)號(hào) 姓名 日期: 月 日
1、 A B是AB=B的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、 是 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
3、 2x2-5x-30的一個(gè)必要不充分條件是 ( )
A.-
4、2且b是a+b4且ab的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
5、設(shè)a1、b1、c1、a2、b2、c2均為非零實(shí)數(shù),不等式a1x2+b1x+c10和a2x2+b2x+c20的解集分別為集合M和N,那么 是 M=N 的 ( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分又不必要條件
6、若命題A: ,命題B: ,則命題A是B的 條件;
7、設(shè)條件p:|x|=x,條件q:x2-x,則p是q的 條件;
8、方程mx2+2x+1=0至少有一個(gè)負(fù)根的充要條件是 ;
9、關(guān)于x的方程x2+mx+n = 0有兩個(gè)小于1的正根的一個(gè)充要條件是 ;
10、已知 ,求證: 的充要條件是 ;
11、已知p:-210,q:1-m1+m,若﹁p是﹁q的必要不充分條件,求實(shí)數(shù)m的取值范圍。
12、已知關(guān)于x的方程(1-a)x2+(a+2)x-4=0,aR,求:
(1)方程有兩個(gè)正根的充要條件;
(2)方程至少有一正根的充要條件.
高一數(shù)學(xué)教案8
教學(xué)目標(biāo)
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
(3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;
。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.
教學(xué)建議
。ㄒ唬┙滩姆治
1.知識(shí)結(jié)構(gòu)
首先給出推斷符號(hào)“”,并引出的意義,在此基礎(chǔ)上講述了充要條件的初步知識(shí).
2.重點(diǎn)難點(diǎn)分析
本節(jié)的重點(diǎn)與難點(diǎn)是關(guān)于充要條件的判斷.
。1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學(xué)概念,主要用來(lái)區(qū)分命題的條件和結(jié)論之間的因果關(guān)系.
。2)在判斷條件和結(jié)論之間的因果關(guān)系中應(yīng)該:
、偈紫确智鍡l件是什么,結(jié)論是什么;
、谌缓髧L試用條件推結(jié)論,再嘗試用結(jié)論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說(shuō)明其不成立;
、圩詈笤僦赋鰲l件是結(jié)論的什么條件.
。3)在討論條件和條件的關(guān)系時(shí),要注意:
、偃簦,則是的充分但不必要條件;
、谌,但,則是的必要但不充分條件;
③若,且,則是的充要條件;
、苋,且,則是的充要條件;
、萑,且,則是的既不充分也不必要條件.
。4)若條件以集合的形式出現(xiàn),結(jié)論以集合的形式出現(xiàn),則借助集合知識(shí),有助于充要條件的理解和判斷.
、偃,則是的充分條件;
顯然,要使元素,只需就夠了.類似地還有:
、谌,則是的必要條件;
、廴簦瑒t是的充要條件;
、苋,且,則是的既不必要也不充分條件.
。5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當(dāng)我們證明某一命題有困難時(shí),可以證明該命題的逆否命題成立,從而得出原命題成立.
。ǘ┙谭ńㄗh
1.學(xué)習(xí)充分條件、必要條件和充要條件知識(shí),要注意與前面有關(guān)邏輯初步知識(shí)內(nèi)容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡(jiǎn)單命題,也可以是不能判斷真假的語(yǔ)句,也可以是含有邏輯聯(lián)結(jié)詞或“若則”形式的復(fù)合命題.
2.由于這節(jié)課概念性、理論性較強(qiáng),一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵.教學(xué)中始終要注意以學(xué)生為主,讓學(xué)生在自我思考、相互交流中去結(jié)概念“下定義”,去體會(huì)概念的本質(zhì)屬性.
3.由于“充要條件”與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時(shí)可以從判斷命題的真假入手,來(lái)分析命題的條件對(duì)于結(jié)論來(lái)說(shuō),是否充分,從而引入“充分條件”的概念,進(jìn)而引入“必要條件”的概念.
4.教材中對(duì)“充分條件”、“必要條件”的定義沒(méi)有作過(guò)多的解釋說(shuō)明,為了讓學(xué)生能理解定義的合理性,在教學(xué)過(guò)程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來(lái)認(rèn)識(shí)“充分條件”的概念,從互為逆否命題的等價(jià)性來(lái)引出“必要條件”的概念.
教學(xué)設(shè)計(jì)示例
充要條件
教學(xué)目標(biāo):
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
(3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;
。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.
教學(xué)重點(diǎn)難點(diǎn):
關(guān)于充要條件的.判斷
教學(xué)用具:
幻燈機(jī)或?qū)嵨锿队皟x
教學(xué)過(guò)程設(shè)計(jì)
1.復(fù)習(xí)引入
練習(xí):判斷下列命題是真命題還是假命題(用幻燈投影):
(1)若,則;
。2)若,則;
。3)全等三角形的面積相等;
(4)對(duì)角線互相垂直的四邊形是菱形;
(5)若,則;
(6)若方程有兩個(gè)不等的實(shí)數(shù)解,則.
(學(xué)生口答,教師板書(shū).)
。1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.
置疑:對(duì)于命題“若,則”,有時(shí)是真命題,有時(shí)是假命題.如何判斷其真假的?
答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.
對(duì)于命題“若,則”,如果由經(jīng)過(guò)推理能推出,也就是說(shuō),如果成立,那么一定成立.換句話說(shuō),只要有條件就能充分地保證結(jié)論的成立,這時(shí)我們稱條件是成立的充分條件,記作.
2.講授新課
(板書(shū)充分條件的定義.)
一般地,如果已知,那么我們就說(shuō)是成立的充分條件.
提問(wèn):請(qǐng)用充分條件來(lái)敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關(guān)系.
。▽W(xué)生口答)
。1)“,”是“”成立的充分條件;
。2)“三角形全等”是“三角形面積相等”成立的充分條件;
(3)“方程的有兩個(gè)不等的實(shí)數(shù)解”是“”成立的充分條件.
從另一個(gè)角度看,如果成立,那么其逆否命題也成立,即如果沒(méi)有,也就沒(méi)有,亦即是成立的必須要有的條件,也就是必要條件.
(板書(shū)必要條件的定義.)
提出問(wèn)題:用“充分條件”和“必要條件”來(lái)敘述上述6個(gè)命題.
。▽W(xué)生口答).
(1)因?yàn),所以是的充分條件,是的必要條件;
。2)因?yàn)椋允堑谋匾獥l件,是的充分條件;
。3)因?yàn)椤皟扇切稳取薄皟扇切蚊娣e相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;
。4)因?yàn)椤八倪呅蔚膶?duì)角線互相垂直”“四邊形是菱形”,所以“四邊形的對(duì)角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對(duì)角線互相垂直”的充分條件;
(5)因?yàn),所以是的必要條件,是的充分條件;
(6)因?yàn)椤胺匠痰挠袃蓚(gè)不等的實(shí)根”“”,而且“方程的有兩個(gè)不等的實(shí)根”“”,所以“方程的有兩個(gè)不等的實(shí)根”是“”充分條件,而且是必要條件.
總結(jié):如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡(jiǎn)稱充要條件,記作.
。ò鍟(shū)充要條件的定義.)
3.鞏固新課
例1(用投影儀投影.)
。▽W(xué)生活動(dòng),教師引導(dǎo)學(xué)生作出下面回答.)
、僖?yàn)橛欣頂?shù)一定是實(shí)數(shù),但實(shí)數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;
、谝欢芡瞥,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;
、邸⑹瞧鏀(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;
、鼙硎净,所以是成立的必要非充分條件;
⑤由交集的定義可知且是成立的充要條件;
、抻芍,所以是成立的充分非必要條件;
、哂芍,所以是,成立的必要非充分條件;
、嘁字笆4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;
。ㄍㄟ^(guò)對(duì)上述問(wèn)題的交流、思辯,在爭(zhēng)論中得到了正確答案,并加深了對(duì)充分條件、必要條件的認(rèn)識(shí).)
例2已知是的充要條件,是的必要條件同時(shí)又是的充分條件,試與的關(guān)系.(投影)
解:由已知得,
所以是的充分條件,或是的必要條件.
4.小結(jié)回授
今天我們學(xué)習(xí)了充分條件、必要條件和充要條件的概念,并學(xué)會(huì)了判斷條件A是B的什么條件,這為我們今后解決數(shù)學(xué)問(wèn)題打下了等價(jià)轉(zhuǎn)化的基礎(chǔ).
課內(nèi)練習(xí):課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))第35頁(yè)練習(xí)l、2;第36頁(yè)練習(xí)l、2.
。ㄍㄟ^(guò)練習(xí),檢查學(xué)生掌握情況,有針對(duì)性的進(jìn)行講評(píng).)
5.課外作業(yè):教材第36頁(yè) 習(xí)題1.8 1、2、3.
高一數(shù)學(xué)教案9
教學(xué)目標(biāo):
(1)了解集合的表示方法;
(2)能正確選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;
教學(xué)重點(diǎn):掌握集合的表示方法;
教學(xué)難點(diǎn):選擇恰當(dāng)?shù)谋硎痉椒?
教學(xué)過(guò)程:
一、復(fù)習(xí)回顧:
1.集合和元素的定義;元素的三個(gè)特性;元素與集合的關(guān)系;常用的數(shù)集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關(guān)系
二、新課教學(xué)
(一).集合的表示方法
我們可以用自然語(yǔ)言和圖形語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。
(1) 列舉法:把集合中的元素一一列舉出來(lái),并用花括號(hào)“ ”括起來(lái)表示集合的方法叫列舉法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
說(shuō)明:1.集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考
慮元素的順序。
2.各個(gè)元素之間要用逗號(hào)隔開(kāi);
3.元素不能重復(fù);
4.集合中的元素可以數(shù),點(diǎn),代數(shù)式等;
5.對(duì)于含有較多元素的集合,用列舉法表示時(shí),必須把元素間的規(guī)律顯示清楚后方能用省略號(hào),象自然數(shù)集N用列舉法表示為
例1.(課本例1)用列舉法表示下列集合:
(1)小于10的所有自然數(shù)組成的集合;
(2)方程x2=x的所有實(shí)數(shù)根組成的集合;
(3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;
(4)方程組 的解組成的集合。
思考2:(課本P4的思考題)得出描述法的定義:
(2)描述法:把集合中的元素的公共屬性描述出來(lái),寫(xiě)在花括號(hào){ }內(nèi)。
具體方法:在花括號(hào)內(nèi)先寫(xiě)上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫(huà)一條豎線,在豎線后寫(xiě)出這個(gè)集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
說(shuō)明:
1.課本P5最后一段話;
2.描述法表示集合應(yīng)注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個(gè)集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數(shù)},即代表整數(shù)集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫(xiě){全體整數(shù)}。下列寫(xiě)法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。
例2.(課本例2)試分別用列舉法和描述法表示下列集合:
(1)方程x2—2=0的'所有實(shí)數(shù)根組成的集合;
(2)由大于10小于20的所有整數(shù)組成的集合;
(3)方程組 的解。
思考3:(課本P6思考)
說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。
(二).課堂練習(xí):
1.課本P6練習(xí)2;
2.用適當(dāng)?shù)姆椒ū硎炯希捍笥?的所有奇數(shù)
3.集合A={x| ∈Z,x∈N},則它的元素是 。
4.已知集合A={x|-3
歸納小結(jié):
本節(jié)課從實(shí)例入手,介紹了集合的常用表示方法,包括列舉法、描述法。
作業(yè)布置:
1. 習(xí)題1.1,第3.4題;
2. 課后預(yù)習(xí)集合間的基本關(guān)系.
高一數(shù)學(xué)教案10
教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),高中階段更注重函數(shù)模型化的思想.
教學(xué)目的:
。1)通過(guò)豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;
。2)了解構(gòu)成函數(shù)的要素;
。3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號(hào)表示某些函數(shù)的定義域;
教學(xué)重點(diǎn):理解函數(shù)的模型化思想,用合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù);
教學(xué)難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的`區(qū)間表示;
教學(xué)過(guò)程:
一、引入課題
1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2.閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
。1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;
。2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;
。3)“八五”計(jì)劃以來(lái)我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問(wèn)題
備用實(shí)例:
我國(guó)xxxx年4月份非典疫情統(tǒng)計(jì):
日期222324252627282930
新增確診病例數(shù)1061058910311312698152101
3.引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;
4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.
二、新課教學(xué)
。ㄒ唬┖瘮(shù)的有關(guān)概念
1.函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
○1“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
○2函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.
2.構(gòu)成函數(shù)的三要素:
定義域、對(duì)應(yīng)關(guān)系和值域
3.區(qū)間的概念
。1)區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間;
。2)無(wú)窮區(qū)間;
。3)區(qū)間的數(shù)軸表示.
4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論
。ㄓ蓪W(xué)生完成,師生共同分析講評(píng))
。ǘ┑湫屠}
1.求函數(shù)定義域
課本P20例1
解:(略)
說(shuō)明:
○1函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;
○2如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;
○3函數(shù)的定義域、值域要寫(xiě)成集合或區(qū)間的形式.
鞏固練習(xí):課本P22第1題
2.判斷兩個(gè)函數(shù)是否為同一函數(shù)
課本P21例2
解:(略)
說(shuō)明:
○1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))
○2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。
鞏固練習(xí):
○1課本P22第2題
○2判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說(shuō)明理由?
(1)f(x)=(x-1)0;g(x)=1
。2)f(x)=x;g(x)=
。3)f(x)=x2;f(x)=(x+1)2
。4)f(x)=|x|;g(x)=
。ㄈ┱n堂練習(xí)
求下列函數(shù)的定義域
。1)
。2)
(3)
。4)
(5)
。6)
三、歸納小結(jié),強(qiáng)化思想
從具體實(shí)例引入了函數(shù)的的概念,用集合與對(duì)應(yīng)的語(yǔ)言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來(lái)表示集合。
四、作業(yè)布置
課本P28習(xí)題1.2(A組)第1—7題(B組)第1題
高一數(shù)學(xué)教案11
第一節(jié) 集合的含義與表示
學(xué)時(shí):1學(xué)時(shí)
[學(xué)習(xí)引導(dǎo)]
一、自主學(xué)習(xí)
1.閱讀課本 .
2.回答問(wèn)題:
、疟竟(jié)內(nèi)容有哪些概念和知識(shí)點(diǎn)?
⑵嘗試說(shuō)出相關(guān)概念的含義?
3完成 練習(xí)
4小結(jié)
二、方法指導(dǎo)
1、要結(jié)合例子理解集合的概念,能說(shuō)出常用的數(shù)集的名稱和符號(hào)。
2、理解集合元素的特性,并會(huì)判斷元素與集合的關(guān)系
3、掌握集合的.表示方法,并會(huì)正確運(yùn)用它們表示一些簡(jiǎn)單集合。
4、在學(xué)習(xí)中要特別注意理解空集的意義和記法
[思考引導(dǎo)]
一、提問(wèn)題
1.集合中的元素有什么特點(diǎn)?
2、集合的常用表示法有哪些?
3、集合如何分類?
4.元素與集合具有什么關(guān)系?如何用數(shù)學(xué)語(yǔ)言表述?
5集合 和 是否相同?
二、變題目
1.下列各組對(duì)象不能構(gòu)成集合的是( )
A.北京大學(xué)2008級(jí)新生
B.26個(gè)英文字母
C.著名的藝術(shù)家
D.2008年北京奧運(yùn)會(huì)中所設(shè)定的比賽項(xiàng)目
2.下列語(yǔ)句:①0與 表示同一個(gè)集合;
②由1,2,3組成的集合可表示為 或 ;
、鄯匠 的解集可表示為 ;
④集合 可以用列舉法表示。
其中正確的是( )
A.①和④ B.②和③
C.② D.以上語(yǔ)句都不對(duì)
[總結(jié)引導(dǎo)]
1.集合中元素的三特性:
2.集合、元素、及其相互關(guān)系的數(shù)學(xué)符號(hào)語(yǔ)言的表示和理解:
3.空集的含義:
[拓展引導(dǎo)]
1.課外作業(yè): 習(xí)題11第 題;
2.若集合 ,求實(shí)數(shù) 的值;
3.若集合 只有一個(gè)元素,則實(shí)數(shù) 的值為 ;若 為空集,則 的取值范圍是 .
撰稿:程曉杰 審稿:宋慶
高一數(shù)學(xué)教案12
一、指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開(kāi),《課程方案》提出了教育要面向世界,面向未來(lái),面向現(xiàn)代化和教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過(guò)程的能力。
(3) 根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺(jué)心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
(4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會(huì)通過(guò)收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來(lái)解決實(shí)際問(wèn)題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、學(xué)生狀況分析
本學(xué)期擔(dān)任高一(1)班和(5)班的數(shù)學(xué)教學(xué)工作,學(xué)生共有111人,其中(1)班學(xué)生是名校直通班,學(xué)生思維活躍,(5)班是火箭班,學(xué)生基本素質(zhì)不錯(cuò),一些基本知識(shí)掌握不是很好,學(xué)習(xí)積極性需要教師提高,成績(jī)以中等為主,中上不多。兩個(gè)班中,從軍訓(xùn)一周來(lái)看,學(xué)生的學(xué)習(xí)積極性還是比較高,愛(ài)問(wèn)問(wèn)題的同學(xué)比較多,但由于基礎(chǔ)知識(shí)不太牢固,上課效率不是很高。
教材簡(jiǎn)析
使用人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(A版)》,教材在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有親和力、問(wèn)題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修4有三章(三角函數(shù);平面向量;三角恒等變換)。
必修1,主要涉及兩章內(nèi)容:
第一章 集合
通過(guò)本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時(shí)的簡(jiǎn)潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會(huì)用集合語(yǔ)言表示數(shù)學(xué)對(duì)象,為以后的學(xué)習(xí)奠定基礎(chǔ)。
1.了解集合的含義,體會(huì)元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;新-課-標(biāo)-第-一-網(wǎng)
2.理解集合間的包含與相等關(guān)系,能識(shí)別給定集合的子集,了解全集與空集的含義;
3.理解補(bǔ)集的含義,會(huì)求在給定集合中某個(gè)集合的補(bǔ)集;
4.理解兩個(gè)集合的并集和交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;
6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識(shí)的過(guò)程中,培養(yǎng)學(xué)生的思維能力。
第二章 函數(shù)的概念與基本初等函數(shù)Ⅰ
教學(xué)本章時(shí)應(yīng)立足于現(xiàn)實(shí)生活從具體問(wèn)題入手,以問(wèn)題為背景,按照問(wèn)題情境數(shù)學(xué)活動(dòng)意義建構(gòu)數(shù)學(xué)理論數(shù)學(xué)應(yīng)用回顧反思的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過(guò)實(shí)驗(yàn)、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問(wèn)題。通過(guò)本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會(huì)現(xiàn)象基本規(guī)律的工具和語(yǔ)言,學(xué)會(huì)用函數(shù)的思想、變化的觀點(diǎn)分析和解決問(wèn)題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識(shí)表述、刻畫(huà)事物的變化規(guī)律;
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運(yùn)算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì),掌握對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)時(shí)描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;
3.了解函數(shù)與方程之間的關(guān)系;會(huì)用二分法求簡(jiǎn)單方程的近似解;了解函數(shù)模型及其意義;
4.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問(wèn)題和解決問(wèn)題的能力、創(chuàng)新意識(shí)與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。
必修4,主要涉及三章內(nèi)容:
第一章 三角函數(shù)
通過(guò)本章學(xué)習(xí),有助于學(xué)生認(rèn)識(shí)三角函數(shù)與實(shí)際生活的緊密聯(lián)系,以及三角函數(shù)在解決實(shí)際問(wèn)題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價(jià)值,學(xué)會(huì)用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實(shí)世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問(wèn)題,發(fā)展數(shù)學(xué)應(yīng)用意識(shí)。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章 平面向量
在本章中讓學(xué)生了解平面向量豐富的實(shí)際背景,理解平面向量及其運(yùn)算的意義,能用向量的語(yǔ)言和方法表述和解決數(shù)學(xué)和物理中的一些問(wèn)題,發(fā)展運(yùn)算能力和解決實(shí)際問(wèn)題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運(yùn)算;
3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運(yùn)算;
4.理解平面向量數(shù)量積的含義,會(huì)用平面向量的數(shù)量積解決有關(guān)角度和垂直的問(wèn)題。
第三章 三角恒等變換
通過(guò)推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過(guò)程,讓學(xué)生在經(jīng)歷和參與數(shù)學(xué)發(fā)現(xiàn)活動(dòng)的基礎(chǔ)上,體會(huì)向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。
1.掌握兩角和與差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式 ;
3.能正確運(yùn)用三角公式進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、求值和恒等式證明。
三、教學(xué)任務(wù)
本期授課內(nèi)容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。
四、教學(xué)質(zhì)量目標(biāo)新 課 標(biāo)
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會(huì)數(shù)學(xué)思想和方法。
2.提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高學(xué)生提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的`一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
五、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作及措施
重點(diǎn)工作:
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹(shù)立新的教學(xué)理念,以雙基教學(xué)為主要內(nèi)容,堅(jiān)持抓兩頭、帶中間、整體推進(jìn),使每個(gè)學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。
分層推進(jìn)措施
1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹(shù)立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學(xué)活動(dòng)、故事、提問(wèn)、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、培養(yǎng)能力是數(shù)學(xué)教學(xué)的落腳點(diǎn)。能力是在獲得和運(yùn)用知識(shí)的過(guò)程中逐步培養(yǎng)起來(lái)的。在銜接教學(xué)中,首先要加強(qiáng)基本概念和基本規(guī)律的教學(xué)。
加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力和解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、講清講透數(shù)學(xué)概念和規(guī)律,使學(xué)生掌握完整的基礎(chǔ)知識(shí),培養(yǎng)學(xué)生數(shù)學(xué)思維能力 ,抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對(duì)不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動(dòng)接受知識(shí)轉(zhuǎn)化主動(dòng)學(xué)習(xí)知識(shí)。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
7、加強(qiáng)學(xué)生良好學(xué)習(xí)習(xí)慣的培養(yǎng)
六、教學(xué)時(shí)間大致安排
集合與函數(shù)概念 13 課時(shí)
基本初等函數(shù) 15
課時(shí)
函數(shù)的應(yīng)用 8
課時(shí)
三角函數(shù) 24
課時(shí)
平面向量 14
課時(shí)
三角恒等變換 9
課時(shí)
高一數(shù)學(xué)教案13
教學(xué)目的:
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法
。2)使學(xué)生初步了解“屬于”關(guān)系的意義
。3)使學(xué)生初步了解有限集、無(wú)限集、空集的意義
教學(xué)重點(diǎn):集合的基本概念及表示方法
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合
授課類型:新授課
課時(shí)安排:1課時(shí)
教 具:多媒體、實(shí)物投影儀
內(nèi)容分析:
集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語(yǔ)言表述一些問(wèn)題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說(shuō),從開(kāi)始學(xué)習(xí)數(shù)學(xué)就離不開(kāi)對(duì)邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問(wèn)題、研究問(wèn)題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識(shí)與簡(jiǎn)易邏輯知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語(yǔ)言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開(kāi)集合與邏輯。
本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫(huà)圖表示集合的例子。
這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概念 在開(kāi)始接觸集合的概念時(shí),主要還是通過(guò)實(shí)例,對(duì)概念有一個(gè)初步認(rèn)識(shí) 教科書(shū)給出的“一般地,某些指定的.對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集 ”這句話,只是對(duì)集合概念的描述性說(shuō)明。
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
1、簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2、教材中的章頭引言;
3、集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見(jiàn)附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問(wèn)題如下:
。1)有那些概念?是如何定義的?
(2)有那些符號(hào)?是如何表示的?
。3)集合中元素的特性是什么?
。ㄒ唬┘系挠嘘P(guān)概念:
由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說(shuō),每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集。集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。
定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合.
1、集合的概念
。1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集)
。2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素
2、常用數(shù)集及記法
。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,
。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+
(3)整數(shù)集:全體整數(shù)的集合 記作Z ,
(4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,
。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0
。2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對(duì)于集合的隸屬關(guān)系
。1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A
。2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作
4、集合中元素的特性
。1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒(méi)有重復(fù)
。3)無(wú)序性:集合中的元素沒(méi)有一定的順序(通常用正常的順序?qū)懗觯?/p>
5、⑴集合通常用大寫(xiě)的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫(xiě)的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_(kāi)口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫(xiě)
三、練習(xí)題:
1、教材P5練習(xí)1、2
2、下列各組對(duì)象能確定一個(gè)集合嗎?
。1)所有很大的實(shí)數(shù) (不確定)
。2)好心的人 (不確定)
。3)1,2,2,3,4,5.(有重復(fù))
3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_—2,0,2__
4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A )
。ˋ)2個(gè)元素 (B)3個(gè)元素 (C)4個(gè)元素 (D)5個(gè)元素
5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:
。1) 當(dāng)x∈N時(shí), x∈G;
。2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G
證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整數(shù),
∴ = 不一定屬于集合G
四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2、集合元素的性質(zhì):確定性,互異性,無(wú)序性
3、常用數(shù)集的定義及記法
高一數(shù)學(xué)教案14
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來(lái)公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。
1。獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過(guò)不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2。提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3。提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4。發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5。提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6。具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點(diǎn):
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(a版)》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
1。親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2。問(wèn)題性:以恰時(shí)恰點(diǎn)的問(wèn)題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問(wèn)題意識(shí),孕育創(chuàng)新精神。
3?茖W(xué)性與思想性:通過(guò)不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問(wèn)題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4。時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
三、教法分析:
1。選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的`語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2。通過(guò)觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3。在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
四、學(xué)情分析:
1、基本情況:12班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。
14班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。
2、兩個(gè)班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺(jué)性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺(jué)性。班級(jí)存在的最大問(wèn)題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹(shù)立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
高一數(shù)學(xué)教案15
1、知識(shí)與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));
(2)理解任意角的三角函數(shù)不同的定義方法;
(3)了解如何利用與單位圓有關(guān)的有向線段,將任意角α的正弦、余弦、正切函數(shù)值分別用正弦線、余弦線、正切線表示出來(lái);
(4)掌握并能初步運(yùn)用公式一;
(5)樹(shù)立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).
2、過(guò)程與方法
初中學(xué)過(guò):銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù).引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過(guò)單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義.根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的`定義域以及這三種函數(shù)的值在各象限的符號(hào).最后主要是借助有向線段進(jìn)一步認(rèn)識(shí)三角函數(shù).講解例題,總結(jié)方法,鞏固練習(xí).
3、情態(tài)與價(jià)值
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn).過(guò)去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來(lái)定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對(duì)準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對(duì)應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對(duì)應(yīng)關(guān)系有沖突,而且“比值”需要通過(guò)運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會(huì)影響學(xué)生對(duì)三角函數(shù)概念的理解.
本節(jié)利用單位圓上點(diǎn)的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù).這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對(duì)應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系.
教學(xué)重難點(diǎn)
重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));終邊相同的角的同一三角函數(shù)值相等(公式一).
難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));三角函數(shù)線的正確理解.
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案01-17
【熱門(mén)】高一數(shù)學(xué)教案02-27
【推薦】高一數(shù)學(xué)教案02-25
【薦】高一數(shù)學(xué)教案01-31
高一數(shù)學(xué)教案【熱】02-01
高一數(shù)學(xué)教案【熱門(mén)】01-24
高一數(shù)學(xué)教案【薦】01-24
高一數(shù)學(xué)教案【推薦】01-24