中文国产日韩欧美视频,午夜精品999,色综合天天综合网国产成人网,色综合视频一区二区观看,国产高清在线精品,伊人色播,色综合久久天天综合观看

數(shù)學八年級上冊教案

時間:2024-09-03 11:35:29 曉鳳 數(shù)學教案 我要投稿

數(shù)學八年級上冊教案(精選15篇)

  作為一名無私奉獻的老師,往往需要進行教案編寫工作,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。教案要怎么寫呢?以下是小編精心整理的數(shù)學八年級上冊教案,希望對大家有所幫助。

數(shù)學八年級上冊教案(精選15篇)

  數(shù)學八年級上冊教案 1

  一、教學目標

  1、理解分式的基本性質(zhì)。

  2、會用分式的基本性質(zhì)將分式變形。

  二、重點、難點

  1、重點:理解分式的基本性質(zhì)。

  2、難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。

  3、認知難點與突破方法

  教學難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎(chǔ)上靈活地將分式變形。

  三、練習題的意圖分析

  1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

  2.P9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應(yīng)概念及方法的理解。

  3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的.基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

  “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。

  四、課堂引入

  1、請同學們考慮:與相等嗎?與相等嗎?為什么?

  2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

  3、提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì)。

  五、例題講解

  P7例2.填空:

  [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。

  P11例3.約分:

  [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。

  P11例4.通分:

  [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  數(shù)學八年級上冊教案 2

  一、創(chuàng)設(shè)情景,明確目標

  多媒體投影一組圖片,讓同學們從中抽象出平面圖形,從而引出課題。

  二、自主學習,指向目標

  學習至此:請完成《學生用書》相應(yīng)部分。

  三、合作探究,達成目標

  多邊形的定義及有關(guān)概念

  活動一:閱讀教材P19。

  展示點評:多邊形是怎么組成的?常見的多邊形有哪些?邊數(shù)最少的多邊形是幾邊形?什么是多邊形的邊、內(nèi)角、外角?

  小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?

  反思小結(jié):多邊形的定義及相關(guān)概念。

  針對訓練:見《學生用書》相應(yīng)部分

  多邊形的對角線

  活動二:

 。1)十邊形的對角線有35條。

 。2)如果經(jīng)過多邊形的一個頂點有36條對角線,這個多邊形是39邊形。

  展示點評:結(jié)合圖形說明什么是多邊形的對角線?三角形是否有對角線?從五邊形的一個頂點出發(fā)可以引幾條對角線?五邊形有幾條對角線?從n邊形的一個頂點出發(fā)可以引幾條對角線?n邊形有多少條對角線?表達式中的'(n—3)是什么意思?為什么要除以2?

  反思小結(jié):當n為已知時,可以直接代入求得對角線的條數(shù),當對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。

  小組討論:如何靈活運用多邊形對角線條數(shù)的規(guī)律解題?

  針對訓練:見《學生用書》相應(yīng)部分

  正多邊形的有關(guān)概念

  活動二:閱讀教材P20。

  展示點評:畫圖說明什么是凸多邊形和凹多邊形?正多邊形要求的條件是什么?邊數(shù)最少的正多邊形是什么?

  小組討論:判斷一個多邊形是否是正多邊形的條件?

  反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。

  針對訓練:見《學生用書》相應(yīng)部分

  四、總結(jié)梳理,內(nèi)化目標

  本節(jié)學習的數(shù)學知識是:

  1、多邊形、多邊形的外角,多邊形的對角線。

  2、凸凹多邊形的概念。

  五、達標檢測,反思目標

  1、下列敘述正確的是(D)

  A、每條邊都相等的多邊形是正多邊形

  B、如果畫出多邊形某一條邊所在的直線,這個多邊形都在這條直線的同一側(cè),那么它一定是凸多邊形

  C、每個角都相等的多邊形叫正多邊形

  D、每條邊、每個角都相等的多邊形叫正多邊形

  2、小學學過的下列圖形中不可能是正多邊形的是(D)

  A、三角形B。正方形C。四邊形D。梯形

  3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補角關(guān)系。

  4、已知一個四邊形的四個內(nèi)角的比為1∶2∶3∶4,求這個四邊形的各個內(nèi)角的度數(shù)。

  數(shù)學八年級上冊教案 3

  教學目標

  知識與能力:

  1.運用類比的方法,通過學生的合作探究,得出平行四邊形的判定方法.

  2.理解平行四邊形的另一種判定方法,并學會簡單運用.

  過程與方法:

  1.經(jīng)歷平行四邊行判別條件的探索過程,在有關(guān)活動中發(fā)展學生的合情推理意識.

  2.在運用平行四邊形的判定方法解決問題的過程中,進一步培養(yǎng)和發(fā)展學生的邏輯思維能力和推理論證的表達能力.

  情感、態(tài)度與價值觀:

  通過平行四邊形判別條件的探索,培養(yǎng)學生面對挑戰(zhàn),勇于克服困難的意志,鼓勵學生大膽嘗試,從中獲得成功的體驗,激發(fā)學生的學習熱情.

  教學方法

  啟發(fā)誘導式 教具 三角尺

  教學重點

  平行四邊形判定方法的探究、運用.

  教學難點

  對平行四邊形判定方法的探究以及平行四邊形的性質(zhì)和判定的綜合運用

  教學過程:

  第一環(huán)節(jié) 復(fù)習引入:

  問題1:

  1.平行四邊形的定義是什么?它有什么作用?

  2.判定四邊形是平行四邊形的方法有哪些?

 。1)兩組對邊分別平行的四邊形是平行四邊形.

 。2)一組對邊平行且相等的四邊形是平行四邊形.

  (3)兩條對角線互相平分的四邊形是平行四邊形.

  第二環(huán)節(jié) 探索活動

  活動:

  工具:兩對長度分別相等的木條。

  動手:能否在平面內(nèi)用這四根筆擺成一個平行四邊形?

  思考1.1:你能說明你所擺出的四邊形是平行四邊形嗎?

  已知:四邊形ABCD中,AD=BC,AB=CD. 試說明四邊形ABCD是平行四邊形.

  思考1.2:以上活動事實,能用文字語言表達嗎?

  學生以小組為單位,利用課前準備好的學具動手操作、觀察,完成探究活動1,共同得到:

 。1)只有將兩兩相等的木條分別作為四邊形的兩組對邊才能得到平行四邊形.

 。2)通過觀察、實驗、猜想到:

  兩組對邊分別相等的四邊形是平行四邊形.

  在此活動中,教師應(yīng)重點關(guān)注:

  (1)學生在拼四邊形時,能否將相等兩木條作為四邊形的對邊;

 。2)轉(zhuǎn)動四邊形,改變它的形狀的過程中,能否觀察得到在此過程中它始終是一個平行四邊形;

  (3)學生能否通過獨立思考、小組合作得出正確的證明思路.

  第三環(huán)節(jié) 鞏固練習

  例1 如圖:在四邊形ABCD中,∠1=∠2,∠3=∠4.四邊形ABCD是平行四邊形嗎?為什么?

  例2 如圖所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,圖中有哪些互相平行的線段?

  隨堂練習

  1.判斷下列說法是否正確

  (1)一組對邊平行且另一組對邊相等的四邊形是平行四邊形 ( )

  (2)兩組對角都相等的四邊形是平行四邊形 ( )

  (3)一組對邊平行且一組對角相等的四邊形是平行四邊形 ( )

  (4)一組對邊平行,一組鄰角互補的四邊形是平行四邊形 ( )

  2.有兩條邊相等,并且另外的`兩條邊也相等的四邊形一定是平行四邊形嗎?為什么?

  3.如圖所示,四個全等的三角形拼成一個大的三角形,找出圖中所有的平行四邊形,并說明理由.

  4.如圖:AD是ΔABC的邊BC邊上的中線.

  (1)畫圖:延長AD到點E,使DE=AD,連接BE,CE;

  (2)判斷四邊形ABEC的形狀,并說明理由.

  第四環(huán)節(jié) 小結(jié):

  師生共同小結(jié),主要圍繞下列幾個問題:

  (1)判定一個四邊形是平行四邊形的方法有哪幾種?

 。2)我們是通過什么方法得出平行四邊形的這幾種判定方法的,這樣的探索過程對你有什么啟發(fā)?

 。3)平行四邊形判定的應(yīng)用 集備意見 個案補充

  數(shù)學八年級上冊教案 4

  教學目標:

  知識目標:理解變量與函數(shù)的概念以及相互之間的關(guān)系

  能力目標:增強對變量的理解

  情感目標:滲透事物是運動的,運動是有規(guī)律的辨證思想

  教學重難點:

  重點:變量與常量

  難點:對變量的判斷

  教學媒體:

  多媒體電腦,繩圈

  教學說明:

  本節(jié)滲透找變量之間的簡單關(guān)系,試列簡單關(guān)系式

  教學設(shè)計:

  引入:

  信息1:當你坐在摩天輪上時,想一想,隨著時間的變化,你離開地面的高度是如何變化的?

  信息2:汽車以60km/h的速度勻速前進,行駛里程為skm,行駛的時間為th,先填寫下面的表格,在試用含t的式子表示s.

  t/m 1 2 3 4 5

  s/km

  新課:

  問題:

  (1)每張電影票的.售價為10元,如果早場售出票150張,日場售出票205張,晚場售出票310張,三場電影的票房收入各多少元?設(shè)一場電影受出票x張,票房收入為y元,怎樣用含x的式子表示y?

 。2)在一根彈簧的下端懸掛中重物,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長度的變化規(guī)律,如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含重物質(zhì)量 m(單位:kg)的式子表示受力后彈簧長度l(單位:cm)?

 。3)要畫一個面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含圓面積s的式子表示圓的半徑r?

  (4)用10m長的繩子圍成長方形,試改變長方形的長度,觀察長方形的面積怎樣變化。記錄不同的長方形的長度值,計算相應(yīng)的長方形面積的值,探索它們的變化規(guī)律,設(shè)長方形的長為xm,面積為sm2,怎樣用含x的式子表示s?

  在一個變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable).數(shù)值始終不變的量為常量。

  指出上述問題中的變量和常量。

  范例:寫出下列各問題中所滿足的關(guān)系式,并指出各個關(guān)系式中,哪些量是變量,哪些量是常量?

  (1)用總長為60m的籬笆圍成矩形場地,求矩形的面積s(m2)與一邊長x(m)之間的關(guān)系式;

  (2)購買單價是0.4元的鉛筆,總金額y(元)與購買的鉛筆的數(shù)量n(支)的關(guān)系;

 。3)運動員在4000m一圈的跑道上訓練,他跑一圈所用的時間t(s)與跑步的速度v(m/s)的關(guān)系;

 。4)銀行規(guī)定:五年期存款的年利率為2.79%,則某人存入x元本金與所得的本息和y(元)之間的關(guān)系。

  活動:

  1.分別指出下列各式中的常量與變量.

  (1)圓的面積公式s=πr2;

  (2)正方形的l=4a;

  (3)大米的單價為2.50元/千克,則購買的大米的數(shù)量x(kg)與金額與金額y的關(guān)系為y=2.5x.

  2.寫出下列問題的關(guān)系式,并指出不、常量和變量.

  (1)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時,應(yīng)繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

  (2)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數(shù)是s,求s與n之間的關(guān)系式.

  思考:

  怎樣列變量之間的關(guān)系式?

  小結(jié):

  變量與常量

  作業(yè):

  閱讀教材5頁,11.1.2函數(shù)

  數(shù)學八年級上冊教案 5

  教學目標:

  1、經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步審美能力,增強對圖形欣賞的意識。

  2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據(jù)圖形的軸對稱關(guān)系設(shè)計軸對稱圖形。

  教學重點

  本節(jié)課重點是掌握已知對稱軸L和一個點,要畫出點A關(guān)于L的軸對稱點的畫法,在此基礎(chǔ)上掌握有關(guān)軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關(guān)系來設(shè)計軸對稱圖形,掌握有關(guān)畫圖的技能及設(shè)計軸對稱圖形是本節(jié)課的難點。

  教學方法

  動手實踐、討論。

  教學工具

  課件

  教學過程:

  一、 先復(fù)習軸對稱圖形的定義,以及軸對稱的相關(guān)的性質(zhì):

  1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________

  2.軸對稱的三個重要性質(zhì)______________________________________________

  _____________________________________________________________________

  二、提出問題:

  二、探索練習:

  1. 提出問題:

  如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。

  你能畫出這個圖案的另一半嗎?

  吸引學生讓學生有一種解決難點的想法。

  2.分析問題:

  分析圖案:這個圖案是由重要六個點構(gòu)成的,要將這個圖案的另一半畫出來,根據(jù)軸對稱的.性質(zhì)只要畫出這個圖案中六個點的對應(yīng)點即可

  問題轉(zhuǎn)化成:已知對稱軸和一個點A,要畫出點A關(guān)于L的對應(yīng)點 ,可采用如下方法:`

  在學生掌握已知一個點畫對應(yīng)點的基礎(chǔ)上,解決上述給出的問題,使學生有一條較明確的思路。

  三、對所學內(nèi)容進行鞏固練習:

  1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。

  2. 試畫出與線段AB關(guān)于直線L的線段

  3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形

  小 結(jié): 本節(jié)課學習了已知對稱軸L和一個點如何畫出它的對應(yīng)點,以及如何補全圖形,并利用軸對稱的性質(zhì)知道如何設(shè)計軸對稱圖形。

  教學后記:學生對這節(jié)課的內(nèi)容掌握比較好,但對于利用軸對稱的性質(zhì)來設(shè)計圖形覺得難度比較大。因本節(jié)課內(nèi)容較有趣,許多學生上課積極性較高

  數(shù)學八年級上冊教案 6

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系。

  2.內(nèi)容解析

  三角形是一種最基本的幾何圖形,是認識其他圖形的基礎(chǔ),在本章中,學好了三角形的有關(guān)概念和性質(zhì),為進一步學習多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學生對三角形的有關(guān)知識有更為深刻的理解。

  本節(jié)課的教學重點:三角形中的相關(guān)概念和三角形三邊關(guān)系。

  本節(jié)課的教學難點:三角形的三邊關(guān)系。

  二、目標和目標解析

  1.教學目標

  (1)了解三角形中的相關(guān)概念,學會用符號語言表示三角形中的對應(yīng)元素。

  (2)理解并且靈活應(yīng)用三角形三邊關(guān)系。

  2.教學目標解析

  (1)結(jié)合具體圖形,識三角形的概念及其基本元素。

  (2)會用符號、字母表示三角形中的'相關(guān)元素,并會按邊對三角形進行分類。

  (3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會運用這一性質(zhì)來解決問題。

  三、教學問題診斷分析

  在探索三角形三邊關(guān)系的過程中,讓學生經(jīng)歷觀察、探究、推理、交流等活動過程,培養(yǎng)學生的和推理能力和合作學習的精神。

  四、教學過程設(shè)計

  1.創(chuàng)設(shè)情境,提出問題

  問題回憶生活中的三角形實例,結(jié)合你以前對三角形的了解,請你給三角形下一個定義。

  師生活動:先讓學生分組討論,然后各小組派代表發(fā)言,針對學生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學生對三角形概念的理解.

  【設(shè)計意圖】三角形概念的獲得,要讓學生經(jīng)歷其描述的過程,借此培養(yǎng)學生的語言表述能力,加深學生對三角形概念的理解。

  2.抽象概括,形成概念

  動態(tài)演示“首尾順次相接”這個的動畫,歸納出三角形的定義。

  師生活動:

  三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  【設(shè)計意圖】讓學生體會由抽象到具體的過程,培養(yǎng)學生的語言表述能力。

  補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法。

  師生活動:結(jié)合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡。

  【設(shè)計意圖】進一步加深學生對三角形中相關(guān)元素的認知,并進一步熟悉幾何語言在學習中的應(yīng)用。

  3.概念辨析,應(yīng)用鞏固

  如圖,不重復(fù),且不遺漏地識別所有三角形,并用符號語言表示出來。

  1.以AB為一邊的三角形有哪些?

  2.以∠D為一個內(nèi)角的三角形有哪些?

  3.以E為一個頂點的三角形有哪些?

  4.說出ΔBCD的三個角。

  師生活動:引導學生從概念出發(fā)進行思考,加深學生對三角形中相關(guān)元素概念的理解。

  4.拓廣延伸,探究分類

  我們知道,按照三個內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對三角形進行分類,又應(yīng)該如何分呢?小組之間同學進行交流并說說你們的想法。

  師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯(lián)系,強化學生對三角形按邊分類的理解。

  數(shù)學八年級上冊教案 7

  教學目標

 。保J識變量、常量.

 。玻畬W會用含一個變量的代數(shù)式表示另一個變量.

  教學重點

 。保J識變量、常量.

 。玻檬阶颖硎咀兞块g關(guān)系.

  教學難點

  用含有一個變量的式子表示另一個變量.

  教學過程

  Ⅰ.提出問題,創(chuàng)設(shè)情境

  情景問題:一輛汽車以60千米/小時的速度勻速行駛,行駛里程為s千米.行駛時間為t小時.

  1.請同學們根據(jù)題意填寫下表:

  t/時 1 2 3 4 5

  s/千米

 。玻谝陨线@個過程中,變化的量是________.變變化的量是__________.

 。常囉煤瑃的式子表示s.

 、颍畬胄抡n

  首先讓學生思考上面的幾個問題,可以互相討論一下,然后回答。

  從題意中可以知道汽車是勻速行駛,那么它1小時行駛60千米,2小時行駛2×60千米,即120千米,3小時行駛3×60千米,即180千米,4小時行駛4×60千米,即240千米,5小時行駛5×60千米,即300千米……因此行駛里程s千米與時間t小時之間有關(guān)系:s=60t.其中里程s與時間t是變化的量,速度60千米/小時是不變的量.

  這種問題反映了勻速行駛的汽車所行駛的里程隨行駛時間的變化過程.其實現(xiàn)實生活中有好多類似的問題,都是反映不同事物的變化過程,其中有些量的值是按照某種規(guī)律變化,其中有些量的是按照某種規(guī)律變化的,如上例中的時間t、里程s,有些量的數(shù)值是始終不變的,如上例中的速度60千米/小時。

  [活動一]

  1.每張電影票售價為10元,如果早場售出票150張,日場售出205張,晚場售出310張.三場電影的票房收入各多少元.設(shè)一場電影售票x張,票房收入y元.怎樣用含x的式子表示y?

  2.在一根彈簧的下端懸掛重物,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長度的變化,探索它們的變化規(guī)律.如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含有重物質(zhì)量m的式子表示受力后的彈簧長度?

  引導學生通過合理、正確的思維方法探索出變化規(guī)律。

  結(jié)論:

 。保鐖鲭娪捌狈渴杖耄150×10=1500(元)

  日場電影票房收入:205×10=20xx(元)

  晚場電影票房收入:310×10=3100(元)

  關(guān)系式:y=10x

 。玻畳1kg重物時彈簧長度: 1×0.5+10=10.5(cm)

  掛2kg重物時彈簧長度:2×0.5+10=11(cm)

  掛3kg重物時彈簧長度:3×0.5+10=11.5(cm)

  關(guān)系式:L=0.5m+10

  通過上述活動,我們清楚地認識到,要想尋求事物變化過程的規(guī)律,首先需確定在這個過程中哪些量是變化的,而哪些量又是不變的.在一個變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable),那么數(shù)值始終不變的.量稱之為常量(constant).如上述兩個過程中,售出票數(shù)x、票房收入y;重物質(zhì)量m,彈簧長度L都是變量.而票價10元,彈簧原長10cm……都是常量.

  [活動二]

  1.要畫一個面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含有圓面積S的式子表示圓半徑r?

 。玻10m長的繩子圍成矩形,試改變矩形長度.觀察矩形的面積怎樣變化.記錄不同的矩形的長度值,計算相應(yīng)的矩形面積的值,探索它們的變化規(guī)律:設(shè)矩形的長度為xcm,面積為Scm2.怎樣用含有x的式子表示S?

  結(jié)論:

  1.要求已知面積的圓的半徑,可利用圓的面積公式經(jīng)過變形求出S= r2r=

  面積為10cm2的圓半徑r= ≈1.78(cm)

  面積為20cm2的圓半徑r= ≈2.52(cm)

  關(guān)系式:r=

 。玻蚓匦蝺山M對邊相等,所以它一條長與一條寬的和應(yīng)是周長10cm的一半,即5cm.

  若長為1cm,則寬為5-1=4(cm)

  據(jù)矩形面積公式:S=1×4=4(cm2)

  若長為2cm,則寬為5-2=3(cm)

  面積S=2×(5-2)=6(cm2)

  … …

  若長為xcm,則寬為5-x(cm)

  面積S=x?(5-x)=5x-x2(cm2)

  從以上兩個題中可以看出,在探索變量間變化規(guī)律時,可利用以前學過的一些有關(guān)知識公式進行分析尋找,以便盡快找出之間關(guān)系,確定關(guān)系式.

 、螅S堂練習

 。保徺I一些鉛筆,單價0.2元/支,總價y元隨鉛筆支數(shù)x變化,指出其中的常量與變量,并寫出關(guān)系式.

  2.一個三角形的底邊長5cm,高h可以任意伸縮.寫出面積S隨h變化關(guān)系式,并指出其中常量與變量.

  解:1.買1支鉛筆價值1×0.2=0.2(元)

  買2支鉛筆價值2×0.2=0.4(元)

  ……

  買x支鉛筆價值x×0.2=0.2x(元)

  所以y=0.2x

  其中單價0.2元/支是常量,總價y元與支數(shù)x是變量.

 。玻鶕(jù)三角形面積公式可知:

  當高h為1cm時,面積S= ×5×1=2.5cm2

  當高h為2cm時,面積S= ×5×2=5cm2

  … …

  當高為hcm,面積S= ×5×h=2.5hcm2

  數(shù)學八年級上冊教案 8

  教學目標:

  1、理解運用平方差公式分解因式的方法。

  2、掌握提公因式法和平方差公式分解因式的綜合運用。

  3、進一步培養(yǎng)學生綜合、分析數(shù)學問題的能力。

  教學重點:

  運用平方差公式分解因式。

  教學難點:

  高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運用。

  教學案例:

  我們數(shù)學組的觀課議課主題:

  1、關(guān)注學生的合作交流

  2、如何使學困生能積極參與課堂交流。

  在精心備課過程中,我設(shè)計了這樣的自學提示:

  1、整式乘法中的平方差公式是xxx,如何用語言描述?把上述公式反過來就得到xxxxx,如何用語言描述?

  2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?

 、-x2+y2②-x2-y2③4-9x2

 、(x+y)2-(x-y)2⑤a4-b4

  3、試總結(jié)運用平方差公式因式分解的條件是什么?

  4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

  5、試總結(jié)因式分解的步驟是什么?

  師巡回指導,生自主探究后交流合作。

  生交流熱情很高,但把全部問題分析完已用了30分鐘。

  生展示自學成果。

  生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

  生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)

  師:這兩種方法都可以,但第二種方法提出負號后,一定要注意括號里的各項要變號。

  生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)

  生4:不對,應(yīng)分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數(shù)或整式的平方差的形式。

  生5:a4-b4可分解為(a2+b2)(a2-b2)

  生6:不對,a2-b2還能繼續(xù)分解為a+b)(a-b)

  師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數(shù)或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止。……

  反思:這節(jié)課我備課比較認真,自學提示的設(shè)計也動了一番腦筋,為讓學生順利得出運用平方差公式因式分解的條件,我設(shè)計了問題2,為讓學生能更容易總結(jié)因式分解的步驟,我又設(shè)計了問題4,自認為,本節(jié)課一定會上的'非常成功,學生的交流、合作,自學展示一定會很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒有按計劃完成教學任務(wù),學生練習很少,作業(yè)有很大一部分同學不能獨立完成,反思這節(jié)課主要有以下幾個問題:

  (1)我在備課時,過高估計了學生的能力,問題2中的③、④、⑤多數(shù)學生剛預(yù)習后不能熟練解答,導致在小組交流時,多數(shù)學生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學生的注意力,導致難點、重點不突出,若能把問題2改為:

  下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。

  (2)教師備課時,要考慮學生的知識層次,能力水平,真正把學生放在第一位,要考慮學生的接受能力,安排習題要循序漸進,切莫過于心急,過分追求課堂容量、習題類型全等等,例如在問題2的設(shè)計時可寫一些簡單的,像④、⑤可到練習時再出現(xiàn),發(fā)現(xiàn)問題后再強調(diào)、歸納,效果也可能會更好。

  我及時調(diào)整了自學提示的內(nèi)容,在另一個班也上了這節(jié)課。果然,學生的討論有了重點,很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非;钴S,練習量大,準確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習時有點不能應(yīng)對自如。例如:師:下面我們把課后練習做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試!鄙珠_始緊張地練習……下課后,無意間發(fā)現(xiàn)竟還有好幾個同學課后題沒做。原因是預(yù)習時不會,上課又沒時間,還有幾位同學練習題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……。看來,以后上課不能單聽學生的齊答,要發(fā)揮組長的職責,注重過關(guān)落實。給學生一點機動時間,讓學習有困難的學生有機會釋疑,練習不在于多,要注意融會貫通,會舉一反三。

  確實,“學海無涯,教海無邊”。我們備課再認真,預(yù)設(shè)再周全,面對不同的學生,不同的學情,仍然會產(chǎn)生新的問題,“沒有,只有更好!”我會一直探索、努力,不斷完善教學設(shè)計,更新教育觀念,直到永遠……

  數(shù)學八年級上冊教案 9

  一、教學目標:

  1.經(jīng)歷觀察、發(fā)現(xiàn)、探究中心對稱圖形的有關(guān)概念和基本性質(zhì)的過程,積累一定的審美體驗。

  2了解中心對稱圖形及其基本性質(zhì),掌握平行四邊形也是中心對稱圖形。

  二、教學重、難點:

  理解中心對稱圖形的概念及其基本性質(zhì)。

  三、教學過程:

  (一)創(chuàng)設(shè)問題情境

  1.以魔術(shù)創(chuàng)設(shè)問題情境:教師通過撲克牌魔術(shù)的演示引出研究課題,激發(fā)學生探索“中心對稱圖形”的興趣。

  【魔術(shù)設(shè)計】:師取出若干張非中心對稱的撲克牌和一張是中心對稱的牌,按牌面的多數(shù)指向整理好(如上圖),然后請一位同學上臺任意抽出一張撲克,把這張牌旋轉(zhuǎn)180O后再插入,再請這位同學洗幾下,展開撲克牌,馬上確定這位同學抽出的撲克。

  (課堂反應(yīng):學生非常安靜,目不轉(zhuǎn)睛地盯著老師做動作。每完成一個動作之后,學生就進入沉思狀態(tài),接著就是小聲議論。)

  師重復(fù)以上活動

  2次后提問:

  (1)你們知道這是什么原因嗎?老師手中的撲克牌圖案有什么特點?

  (2)你能說明為什么老師要把抽出的這張牌旋轉(zhuǎn)1800嗎?(小組討論)

  (反思:創(chuàng)設(shè)問題情境主要在于下面幾點理由:

  (1)采取從學生最熟悉的實際問題情境入手的方式,貼近學生的生活實際,讓學生認識到數(shù)學來源于生活,又服務(wù)于生活,進一步感悟到把實際問題抽象成數(shù)學問題的訓練,從而激發(fā)學生的求知欲。

  (2)所有新知識的學習都以對相關(guān)具體問題情境的探索作為開始,它們是學生了解與學習這些新知識的有效方法,同時也活躍了課堂氣氛,激發(fā)學生的學習興趣。

  (3)通過撲克魔術(shù)創(chuàng)設(shè)問題情境,學生獲得的答案將是豐富的。在最后交流歸納時,他們感覺到,自己在活動中“研究”的成果,對最終形成規(guī)范、正確的結(jié)論是有貢獻的,從而激發(fā)他們更加注意學習方式和“研究”方式。這也是對他們從事科學研究的情感態(tài)度的培養(yǎng)。學生勤于動手、樂于探究,發(fā)展學生實踐應(yīng)用能力和創(chuàng)新精神成為可行。)

  2.教師揭示謎底。

  利用“Z+Z”課件游戲演示牌面,請學生找一找哪張牌旋轉(zhuǎn)180O后和原來牌面一樣。

  3.學生通過動手分析上述撲克牌牌面、獨立思考、探究、合作交流等活動,得到答案:

  (1)只有一張撲克牌圖案顛倒后和原來牌面一樣。

  (2)其余撲克牌顛倒后和原來牌面不一樣,因此,老師事先按牌面的多數(shù)(少數(shù))指向整理好,把任意抽出的一張撲克牌旋轉(zhuǎn)180O后,就可以馬上在一堆撲克牌中找出它。

  (反思:本環(huán)節(jié)是在撲克魔術(shù)揭密問題的具體背景下,通過學生自己的'觀察、發(fā)現(xiàn)、總結(jié)、歸納,進一步理解中心對稱圖形及其特點,發(fā)展空間觀念,突出了數(shù)學課堂教學中的探索性。從而培養(yǎng)了學生觀察、概括能力,讓學生嘗到了成功的喜悅,激發(fā)了學生的發(fā)現(xiàn)思維的火花。)

  (二)學生分組討論、思考探究:

  1.師問:生活中有哪些圖形是與這張撲克牌一樣,旋轉(zhuǎn)180O后和原來一樣?

  生舉例:線段、平行四邊形、矩形、菱形、正方形、圓、飛機的雙葉螺旋槳等。

  2.你能將下列各圖分別繞其上的一點旋轉(zhuǎn)180O,使旋轉(zhuǎn)前后的圖形完全重合嗎?(先讓學生思考,允許有困難的學生利用 “Z+Z”演示其旋轉(zhuǎn)過程。)

  3.有人用“中心對稱圖形”一詞描述上面的這些現(xiàn)象,你認為這個詞是什么含義?

  (對于抽象的概念教學,要關(guān)注概念的實際背景與形成過程,加強數(shù)學與生活的聯(lián)系,力求讓學生采取發(fā)現(xiàn)式的學習方式,通過“想一想”、“議一議”、 “動一動”等多種活動形式,幫助學生克服記憶概念的學習方式。)

  (三)教師明晰,建立模型

  1給出“中心對稱圖形”定義:在平面內(nèi),一個圖形繞某個點旋轉(zhuǎn)180O,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。

  2.對比軸對稱圖形與中心對稱圖形:(列出表格,加深印象)

  軸對稱圖形中心對稱圖形有一條對稱軸——直線有一個對稱中心——點沿對稱軸對折繞對稱中心旋轉(zhuǎn)1880O對折后與原圖形重合

  旋轉(zhuǎn)后與原圖形重合

  (四)解釋、應(yīng)用與拓廣

  1.教師用“Z+Z

  智能教育平臺”演示旋轉(zhuǎn)過程,驗證上述圖形的中心對稱性,引導學生討論、探究中心對稱圖形的性質(zhì)。

  (利用計算機《Z+Z智能教育平臺》技術(shù),通過圖形旋轉(zhuǎn)給出中心對稱圖形的一個幾何解釋,目的是使學生對中心對稱圖形有一個更直觀的認識。)

  2.探究中心對稱圖形的性質(zhì)

  板書:中心對稱圖形上的每一對對應(yīng)點所連成的線段都被對稱中心平分。

  3.師問:怎樣找出一個中心對稱圖形的對稱中心?

  (兩組對應(yīng)點連結(jié)所成線段的交點)

  4.平行四邊形是中心對稱圖形嗎?若是,請找出其對稱中心,你怎樣驗證呢?

  學生分組討論交流并回答。

  討論:根據(jù)以上的驗證方法,你能驗證平行四邊形的哪些性質(zhì)?學生分組討論交流并回答。

  討論:根據(jù)以上的驗證方法,你能驗證平行四邊形的哪些性質(zhì)?

  5逆向問題:如果一個四邊形是中心對稱圖形,那么這個四邊形一定是平行四邊形嗎?

  學生討論回答。

  6你還能找出哪些多邊形是中心對稱圖形?

  (反思:合作學習是新課程改革中追求的一種學習方法,但合作學習必須建立在學生的獨立探索的基礎(chǔ)上,否則合作學習將會流于形式,不能起到應(yīng)有的效果,所于我在上課時強調(diào)學生先獨立思考,再由當天的小組長組織進行,并由當天的記錄員記錄小組成員的活動情況(每個小組有一張課堂合作學習參考表,見附錄)。)

  (五)拓展與延伸

  1.中國文字豐富多彩、含義深刻,有許多是中心對稱的,你能找出幾個嗎?

  2.正六邊形的對稱中心怎樣確定?

  (六)魔術(shù)表演:

  1.師:把4張撲克牌放在桌上,然后把某一張撲克牌旋轉(zhuǎn)180o后,得到右圖,你知道哪一張撲克被旋轉(zhuǎn)過嗎?

  2.學生小組活動:

  以“引入”為例,在一副撲克牌中,拿出若干張撲克牌設(shè)計魔術(shù),相互之間做游戲。

  (新教材的編寫,著重突出了用數(shù)學活動呈現(xiàn)教學內(nèi)容,而不是以例題和習題的形式出現(xiàn)。通過多種形式的實踐活動,讓學生親歷探究與現(xiàn)實生活聯(lián)系密切的學習過程,使學生在合作中學習,在競爭收獲,共同分享成功的喜悅,同時能調(diào)節(jié)課堂的氣氛,培養(yǎng)學生之間的情感。只有這樣,學生的創(chuàng)新意識和動手意識才會充分地發(fā)揮出來。)

  四、案例小結(jié)

  《數(shù)學課程標準》提出:“實踐活動是培養(yǎng)學生進行主動探索與合作交流的重要途徑!薄敖處煈(yīng)該充分利用學生已有的生活經(jīng)驗,隨時引導學生把所學的數(shù)學知識應(yīng)用到生活中去,解決身邊的數(shù)學問題,了解數(shù)學在現(xiàn)實生活中的作用,體會學習數(shù)學的重要性!边@兩段話,正體現(xiàn)了新教材的重要變化——關(guān)注學生的生活世界,學習內(nèi)容更加貼近實際,同時強調(diào)了數(shù)學教學讓學生動手實踐的重要意義和作用。

  現(xiàn)實性的生活內(nèi)容,能夠賦予數(shù)學足夠的活力和靈性。對許多學生來說,“撲克”和“游戲”是很感興趣的內(nèi)容,因此,也具有現(xiàn)實性,即回歸生活(玩撲克牌)——讓學生感知學習數(shù)學可以讓生活增添許多樂趣,同時也讓學生感知到數(shù)學就在我們身邊,學生學習的數(shù)學應(yīng)當是生活中的數(shù)學,是學生“自己身邊的數(shù)學”。這樣,數(shù)學來源于生活,又必須回歸于生活,學生就能在游戲中學得輕松愉快,整個課堂顯得生動活潑。

  數(shù)學八年級上冊教案 10

  教學目標:

  知識與技能

  1、掌握直角三角形的判別條件,并能進行簡單應(yīng)用;

  2、進一步發(fā)展數(shù)感,增加對勾股數(shù)的直觀體驗,培養(yǎng)從實際問題抽象出數(shù)學問題的能力,建立數(shù)學模型、

  3、會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、

  情感態(tài)度與價值觀

  敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學的應(yīng)用價值,發(fā)展運用數(shù)學的信心和能力,初步形成積極參與數(shù)學活動的意識、

  教學重點

  運用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應(yīng)用哪個結(jié)論、

  教學難點

  會辨析哪些問題應(yīng)用哪個結(jié)論、

  課前準備

  標有單位長度的細繩、三角板、量角器、題篇

  教學過程:

  復(fù)習引入:

  請學生復(fù)述勾股定理;使用勾股定理的前提條件是什么?

  已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?

  創(chuàng)設(shè)問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法、

  這樣做得到的是一個直角三角形嗎?

  提出課題:能得到直角三角形嗎

  講授新課:

  1、如何來判斷?(用直角三角板檢驗)

  這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?

  就是說,如果三角形的三邊為 , , ,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)

  2、繼續(xù)嘗試:下面的三組數(shù)分別是一個三角形的三邊長a,b,c:

  5,12,13; 6, 8, 10; 8,15,17、

  (1)這三組數(shù)都滿足a2 +b2=c2嗎?

  (2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

  3、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、

  滿足a2 +b2=c2的.三個正整數(shù),稱為勾股數(shù)、

  4、例1 一個零件的形狀如左圖所示,按規(guī)定這個零件中 ∠A和∠DBC都應(yīng)為直角、工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?

  隨堂練習:

  1、下列幾組數(shù)能否作為直角三角形的三邊長?說說你的理由、

  ⑴9,12,15; ⑵15,36,39;

 、12,35,36; ⑷12,18,22、

  2、已知ABC中BC=41, AC=40, AB=9, 則此三角形為_______三角形, ______是角、

  3、四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積、

  4、習題1、3

  課堂小結(jié):

  1、直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2 +b2=c2 ,那么這個三角形是直角三角形、

  2、滿足a2 +b2=c2的三個正整數(shù),稱為勾股數(shù)、勾股數(shù)擴大相同倍數(shù)后,仍為勾股數(shù)、

  數(shù)學八年級上冊教案 11

  教學目標:

  1. 掌握三角形內(nèi)角和定理及其推論;

  2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;

  3.通過對三角形分類的學習,使學生了解數(shù)學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。

  4.通過三角形內(nèi)角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹?shù)目茖W態(tài)

  5. 通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉(zhuǎn)化的辯證思想。

  教學重點:

  三角形內(nèi)角和定理及其推論。

  教學難點:

  三角形內(nèi)角和定理的證明

  教學用具:

  直尺、微機

  教學方法:

  互動式,談話法

  教學過程:

  1、創(chuàng)設(shè)情境,自然引入

  把問題作為教學的出發(fā)點,創(chuàng)設(shè)問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。

  問題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個內(nèi)角有何關(guān)系呢?

  問題2 你能用幾何推理來論證得到的關(guān)系嗎?

  對于問題1絕大多數(shù)學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內(nèi)容(板書課題)

  新課引入的好壞在某種程度上關(guān)系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學生感覺本節(jié)課學習的內(nèi)容自然合理。

  2、設(shè)問質(zhì)疑,探究嘗試

  (1)求證:三角形三個內(nèi)角的和等于

  讓學生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設(shè)計了電腦動畫顯示具體情景。然后,圍繞問題設(shè)計以下幾個問題讓學生思考,教師進行學法指導。

  問題1 觀察:三個內(nèi)角拼成了一個 什么角?

  問題2 此實驗給我們一個什么啟示?

  (把三角形的三個內(nèi)角之和轉(zhuǎn)化為一個平角)

  問題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?

  其中問題2是解決本題的關(guān)鍵,教師可引導學生分析。對于問題3學生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關(guān)知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉(zhuǎn)化條件;恰當轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達到化難為易解決問題的目的。

  (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

  學生回答后,電腦顯示圖表。

  (3)三角形中三個內(nèi)角之和為定值 ,那么對三角形的其它角還有哪些特殊的關(guān)系呢?

  問題1 直角三角形中,直角與其它兩個銳角有何關(guān)系?

  問題2 三角形一個外角與它不相鄰的兩個內(nèi)角有何關(guān)系?

  問題3 三角形一個外角與其中的一個不相鄰內(nèi)角有何關(guān)系?

  其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。

  這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的`能力。

  3、三角形三個內(nèi)角關(guān)系的定理及推論

  通過上面四個例題的分析與討論,有利于學生基礎(chǔ)知識與基本能力的掌握與提高,同時更有利于學生創(chuàng)新意識與創(chuàng)造性思維能力的培養(yǎng),在練習、講評等教學環(huán)節(jié)中,形成師生之間的、學生之間的“雙向反饋”是很重要的。

  4、變式訓練,鞏固提高

  根據(jù)例4 的度數(shù)的求法,思考如下問題:

  (3)如圖5,過D點畫AB的平行線MN,與AC、BC交于點M、N,則 的度數(shù)多少?

  (4)當MN繞著點D旋轉(zhuǎn)過程中, 會有怎樣的變化?

  提示:變化1 當直線MN與AC、BC的交點仍在線段AC、BC上時, =

  變化2 當直線MN與AC的交點在線段AC上,與BC的交點在BC的延長線上時,

  變化3 當直線MN與AC的交點在線段AC的延長線上,與BC的交點在線段BC上時, =

  變化4當直線MN與AC、BC的交點在C點時, =

  經(jīng)過這樣的變式、發(fā)展、學習,不僅使學生鞏固了所學的數(shù)學知識,也使學生體驗了數(shù)學的運動變化觀,使學生的思維得到了培養(yǎng)。

  5、小結(jié)

  通過設(shè)置問題:“本節(jié)在知識方面以及在思想方法方面你有怎樣的收獲?”師生以談話交流的形式進行小結(jié)。強調(diào)學生注意:輔助線的作用及運用定理及推論解決問題時,要善于抓住條件與結(jié)論的關(guān)系。

  6、布置作業(yè)

  a、書面作業(yè)P43#3

  b、上交作業(yè)P42#16、17

  數(shù)學八年級上冊教案 12

  教學目的:

  1、在二次根式的混合運算中,使學生掌握應(yīng)用有理化分母的方法化簡和計算二次根式;

  2、會求二次根式的代數(shù)的值;

  3、進一步提高學生的綜合運算能力。

  教學重點:

  在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式

  教學難點:

  正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值

  教學過程:

  一、二次根式的混合運算

  例1 計算:

  分析:

  (1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。

  (2)題是含乘方、加、減和除法的混合運算,應(yīng)按運算的順序進行計算,先算括號內(nèi)的式子,最后進行除法運算。注意的計算。

  練習1:P206 / 8--① P207 / 1①②

  例2 計算

  問:計算思路是什么?

  答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進行計算。

  二、求代數(shù)式的值。 注意兩點:

  (1)如果已知條件為含二次根式的式子,先把它化簡;

  (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。

  例3 已知,求的值。

  分析:多項式可轉(zhuǎn)化為用與表示的.式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母。可使計算簡便。

  例4 已知,求的值。

  觀察代數(shù)式的特點,請說出求這個代數(shù)式的值的思路。

  答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。

  三、小結(jié)

  1、對于二次根式的混合混合運算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內(nèi)的式子的運算,運算結(jié)果要化為最簡二次根式。

  2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。

  3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

  四、作業(yè)

  P206 / 7 P206 / 8---②③

  數(shù)學八年級上冊教案 13

  一、班級情況分析:

  本學期一(1)班有學生40人,新轉(zhuǎn)學來一名女生。上學期末考試及格人數(shù)28人,高分人數(shù)3人,優(yōu)秀人數(shù)15人,雖然學生成績在年級排名第一,能過鎮(zhèn)中線,但是學生未能發(fā)揮出真實水平。優(yōu)秀臨界生以及及格臨界生的提升潛力較大。

  一(7)班有學生38人,上學期末考試及格人數(shù)18人,高分人數(shù)2人,優(yōu)秀人數(shù)5人,全班優(yōu)秀學生不多不夠拔尖,成績中層的學生占據(jù)大部分。學生好動,對數(shù)學學習的積極性普遍不夠高,學生好動,課堂氣氛較活躍。學生數(shù)學基礎(chǔ)不扎實。提升空間較大。

  兩班的整體成績均不夠理想。

  二、教材分析:

  本套教材切合《標準》的課程目標,有以下特點:

  1.為學生的數(shù)學學習構(gòu)筑起點,提供大量數(shù)學活動的線索,成為供所有學生從事數(shù)學學習的出發(fā)點。

  2.向?qū)W生提供現(xiàn)實、有趣、富有挑戰(zhàn)性的學習素材。所有數(shù)學知識的學習,都力求從學生實際出發(fā),以他們熟悉或感興趣的問題情境引入學習主題,并展開數(shù)學探究。

  3.為學生提供探索、交流的時間和空間。設(shè)立了“做一做”、“想一想”、“議一議”等欄目,以使學生通過自主探索與合作交流,形成新的知識。

  4.展現(xiàn)數(shù)學知識的形成與應(yīng)用過程,讓學生經(jīng)歷真正的“做數(shù)學”、“用數(shù)學”的過程。

  5.滿足不同學生發(fā)展的需求。

  三、教學目標及要求:

  第一章:

  1.經(jīng)歷用字母表示數(shù)量關(guān)系的過程,在現(xiàn)實情境中進一步理解字母表示數(shù)的意義,發(fā)展符號感。

  2.經(jīng)歷探索整式運算法則的過程,理解整式運算的算理,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達能力。

  3.了解整數(shù)指數(shù)冪的意義和正整數(shù)指數(shù)冪的運算性質(zhì),會進行簡單的整式加、減、乘、除運算。

  4.會推導乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2

  第二章:

  1.經(jīng)歷觀察、操作、想象、推理、交流等過程,進一步發(fā)展空間觀念、推理能力和有條理表達的能力。

  2.在具體情境中了解補角、余角、對頂角,知道等角的余角相等、等角的補角相等、對頂角相等。會用三角尺過已知直線外一點畫這條直線的平行線;會用尺規(guī)作一條線段等于已知線段、作一個角等于已知角。

  3.經(jīng)歷探索直線平行的條件以及平行線特征的過程,掌握直線平行的'條件以及平行線的特征。

  4.進一步激發(fā)學生對數(shù)學方面的興趣,體驗從數(shù)學的角度認識現(xiàn)實。

  第三章:

  1.能形象地描述百萬分之一等較小的數(shù)據(jù),并用科學記數(shù)法表示它們,進一步發(fā)展數(shù)感;能借助計算器進行有關(guān)科學記數(shù)法的計算。

  2.了解近似數(shù)與有效數(shù)字的概念,能按要求取近似數(shù),體會近似數(shù)的意義及在生活中的作用。

  3.通過實例,體驗收集、整理、描述和分析數(shù)據(jù)的過程。

  4.能讀懂統(tǒng)計圖并從中獲取信息,能形象、有效地運用統(tǒng)計圖描述數(shù)據(jù)。

  第四章:

  1.經(jīng)歷從實際問題和游戲中了解必然事件、不可能事件和不確定事件發(fā)生的可能性。

  2.體會等可能性與游戲規(guī)則的公平性,抽象出概率模型,計算概率,解決實際、作出合理決策的過程,體會概率是描述不確定現(xiàn)象的數(shù)學模型。

  3.能設(shè)計符合要求的簡單概率模型。

  第五章:

  1.通過觀察、操作、想象、推理、交流等活動,發(fā)展空間觀念,積累數(shù)學活動經(jīng)驗。

  2.在探索圖形性質(zhì)的過程中,發(fā)展推理能力和有條理的表達能力。

  3.進一步認識三角形的有關(guān)概念,了解三邊之間的關(guān)系以及三角形的內(nèi)角和,了解三角形的穩(wěn)定性。

  4.了解圖形的全等,經(jīng)歷探索三角形全等條件的過程,掌握兩個三角形全等的條件,能應(yīng)用三角形的全等解決一些實際問題。

  5.在分別給出兩角一夾邊、兩邊一夾角和三邊的條件下,能夠利用尺規(guī)作出三角形。

  第六章:

  1.經(jīng)歷探索具體情境中兩個變量之間的關(guān)系的過程,進一步發(fā)展符號感和抽象思維。

  2.能發(fā)現(xiàn)實際情境中的變量及其相互關(guān)系,并確定其中的自變量或因變量。

  3.能從表格、圖象中分析出某些變量之間的關(guān)系,并能用自己的語言進行表達,發(fā)展有條理地進行思考和表達的能力。

  4.能根據(jù)具體問題,選取用表格或關(guān)系式來表示某些變量之間的關(guān)系,并結(jié)合對變量之間關(guān)系的分析,嘗試對變化趨勢進行初步的預(yù)測。

  第七章:

  1.在豐富的現(xiàn)實情境中,經(jīng)歷觀察、折疊、剪紙,圖形欣賞與設(shè)計等數(shù)學活動過程,進一步發(fā)展空間觀念。

  2.通過豐富的生活實例認識軸對稱,探索它的基本性質(zhì),理解對應(yīng)點所連的線段被對稱軸垂直平分的性質(zhì)。

  3.探索并了解基本圖形的軸對稱性及其相關(guān)性質(zhì)。

  4.能夠按要求作出簡單平面圖形經(jīng)過軸對稱后的圖形,探索簡單圖形之間的軸對稱關(guān)系,并能指出對稱軸。

  5.欣賞現(xiàn)實生活中的軸對稱圖形,能利用軸對稱進行一些圖案設(shè)計,體驗軸對稱在現(xiàn)實生活中的廣泛應(yīng)用和豐富的文化價值。

  四、教學改革的設(shè)想(教學具體措施)

  充分體現(xiàn)培優(yōu)扶困的實施,提高優(yōu)秀人數(shù)和及格人數(shù),減少低分人數(shù),切實做到:

  1、根據(jù)學生的個別差異。因材施教,熱情關(guān)懷,循循善誘,加強個別輔導。幫助他們增強學習的信心,逐步達到教學的基本要求,盡量做好培優(yōu)輔差工作。

  2、精心設(shè)計練習,講究練習方式提高練習效率,對作業(yè)嚴格要求,及時檢查,認真批改,對作業(yè)中的錯誤及時找出原因,要求學生認真改正,培養(yǎng)學生獨立完成作業(yè)的良好習慣。

  3、認真?zhèn)湔n,深入鉆研教材,堅持自主學習,充分發(fā)揮學生的主動學習有積極性,了解學生裝學習數(shù)學的特點,研究教學規(guī)律,不斷改進教學方法。

  4、堅持學習,多聽課,多模仿,虛心向有經(jīng)驗的老師請教教育教學方法。努力提升自身的教學技能。

  5、在教學中,加強學生思維能力的培養(yǎng)和非智力因素的培養(yǎng)。多開展數(shù)學活動課,擴大學生的視野,拓寬知識面,培養(yǎng)學習數(shù)學的興趣,發(fā)展數(shù)學才能,發(fā)揮學生的主動性,獨立性和創(chuàng)造性。

  6、開展“一幫一”活動,實行以優(yōu)帶差點的幫助方法,多利用課余時間加強輔導,從基礎(chǔ)知識補起,力求使學生一課一得,力求提高優(yōu)秀率和及格率。

  7.課前充分備好課,在課堂教學中特別要體現(xiàn)出培扶,分層次教育。

  8.重視學生學習興趣的培養(yǎng),激發(fā)學生學習數(shù)學的內(nèi)驅(qū)力。

  9.大膽地深度嘗試新的教學方法,要因地制宜,因材施教。

  10.重視基礎(chǔ)知識過關(guān)和單元測試過關(guān)工作,及時進行單元總結(jié),做好平時的查漏補缺工作,不遺漏知識盲點。

  11.注重對作業(yè)、練習紙、練習冊、測驗卷的及時批改,并盡量做到全批全改,及時反饋信息。

  12.多用多媒體教學,使數(shù)學生動化。

  13.多用實物教學,使數(shù)學形象化。

  14.實行課課清,日日清,周周清。

  15.加強課堂管理,嚴把課堂質(zhì)量關(guān),提高課堂效率。

  16.抓好學生的作業(yè)上交完成情況。

  17.加強與學生的交流,做好學生的思想教育與培優(yōu)輔差工作。

  五、擬定本學期教學目標

  六、擬定本學期培優(yōu)扶養(yǎng)計劃。

  培扶措施

  對臨界優(yōu)秀生

  在理解題、思維訓練題給予方法指導,并要加強書面的表達能力。做到思路清晰,格式標準;A(chǔ)訓練題的過關(guān)檢測,對每次測試的成績給予個別指導,多用激勵教育。

  對臨界及格生:

  首先加強基礎(chǔ)知識的培訓,尤其要在選擇題、填空題多下功夫。在課堂上、課后對他們多加注意,及時糾正錯誤。抓好每次單元過關(guān)測試工作,抓好時機,多表揚,樹立信心。

  七、教學內(nèi)容及課時安排(略)

  八、作業(yè)格式及批改要求:

  作業(yè)格式:

  1.作業(yè)本左邊都畫上豎線,留約0.5CM空白。

  2.每次作業(yè)都要在第一行注明日期和作業(yè)的出處,如P42,1即課本42面第1題。

  3。每題作業(yè)之間要留一行隔開,每次作業(yè)之間至少留一行空白,再寫下一次作業(yè)。

  批改要求:

  1.每題作業(yè)都要有批改的痕跡,錯的打“×”,對的打“√”,書寫要清晰,明確看出錯對。

  2.每次作業(yè)必須全批全改,要體現(xiàn)出層次。作業(yè)簿要打分數(shù)+等級(等級分A、B、C三等,代表學生的書寫成績。)

  3、每次的作業(yè)要及時更正,更正時統(tǒng)一在每次的作業(yè)后面用紅筆更正。

  數(shù)學八年級上冊教案 14

  一、學生起點分析

  通過前一章《勾股定理》的學習,學生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長都是勾股數(shù),甚至有些直角三角形的邊長連有理數(shù)都不是,例如:

  ①腰長為1的等腰直角三角形的底邊長不是有理數(shù)。

 、趦蓷l直角邊分別為1,2的直角三角形的斜邊長不是有理數(shù),這為引入“新數(shù)”奠定了必要性.

  二、教學任務(wù)分析

  《數(shù)不夠用了》是義務(wù)教育課程標準北師大版實驗教科書八年級(上)第二章《實數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個課時完成,第1課時讓學生感受無理數(shù)的存在,初步建立無理數(shù)的印象,結(jié)合勾股定理知識,會根據(jù)要求畫線段;第2課時借助計算器感受無理數(shù)是無限不循環(huán)小數(shù),會判斷一個數(shù)是無理數(shù).本課是第1課時,學生將在具體的實例中,通過操作、估算、分析等活動,感受無理數(shù)的客觀存在性和引入的必要性,并能判斷一個數(shù)是不是有理數(shù).

  本節(jié)課的教學目標是:

 、偻ㄟ^拼圖活動,讓學生感受客觀世界中無理數(shù)的存在;

 、谀芘袛嗳切蔚哪尺呴L是否為無理數(shù);

 、蹖W生親自動手做拼圖活動,培養(yǎng)學生的動手能力和探索精神;

 、苣苷_地進行判斷某些數(shù)是否為有理數(shù),加深對有理數(shù)和無理數(shù)的理解;

  三、教學過程設(shè)計

  本節(jié)課設(shè)計了6個教學環(huán)節(jié):

  第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.

  第一環(huán)節(jié):質(zhì)疑

  內(nèi)容:【想一想】

 、乓粋整數(shù)的平方一定是整數(shù)嗎?

 、埔粋分數(shù)的平方一定是分數(shù)嗎?

  目的:作必要的知識回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的說理.

  效果:為后續(xù)環(huán)節(jié)的進行起了很好的鋪墊的作用

  第二環(huán)節(jié):課題引入

  內(nèi)容:

  1.【算一算】

  已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(shù)(或分數(shù))嗎?

  2.【剪剪拼拼】

  把邊長為1的兩個小正方形通過剪、拼,設(shè)法拼成一個大正方形,你會嗎?

  目的:選取客觀存在的“無理數(shù)“實例,讓學生深刻感受“數(shù)不夠用了”.

  效果:巧設(shè)問題背景,順利引入本節(jié)課題.

  第三環(huán)節(jié):獲取新知

  內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

  【議一議】: 已知 ,請問:① 可能是整數(shù)嗎?② 可能是分數(shù)嗎?

  【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?

  釋2.滿足 的 為什么不是分數(shù)?

  【憶一憶】:讓學生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分數(shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無理數(shù))的.學習奠定了基礎(chǔ)

  【找一找】:在下列正方形網(wǎng)格中,先找出長度為有理數(shù)的線段,再找出長度不是有理數(shù)的線段

  目的:創(chuàng)設(shè)從感性到理性的認知過程,讓學生充分感受“新數(shù)”(無理數(shù))的存在,從而激發(fā)學習新知的興趣

  效果:學生感受到無理數(shù)產(chǎn)生的過程,確定存在一種數(shù)與以往學過的數(shù)不同,產(chǎn)生了學習新數(shù)的必要性.

  第四環(huán)節(jié):應(yīng)用與鞏固

  內(nèi)容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】

  【畫一畫1】:在右1的正方形網(wǎng)格中,畫出兩條線段:

  1.長度是有理數(shù)的線段

  2.長度不是有理數(shù)的線段

  【畫一畫2】:在右2的正方形網(wǎng)格中畫出四個三角形 (右1)

  2.三邊長都是有理數(shù)

  2.只有兩邊長是有理數(shù)

  3.只有一邊長是有理數(shù)

  4.三邊長都不是有理數(shù)

  【仿一仿】:例:在數(shù)軸上表示滿足 的

  解: (右2)

  仿:在數(shù)軸上表示滿足 的

  【賽一賽】:右3是由五個單位正方形組成的紙片,請你把

  它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)

  目的:進一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上

  效果:加深了對“新知”的理解,鞏固了本課所學知識.

  第五環(huán)節(jié):課堂小結(jié)

  內(nèi)容:

  1.通過本課學習,感受有理數(shù)又不夠用了, 請問你有什么收獲與體會?

  2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個嗎?

  3.除了本課所認識的非有理數(shù)的數(shù)以外,你還能找到嗎?

  目的:引導學生自己小結(jié)本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.

  效果:學生總結(jié)、相互補充,學會進行概括總結(jié).

  第六環(huán)節(jié):布置作業(yè)

  習題2.1

  六、教學設(shè)計反思

  (一)生活是數(shù)學的源泉,興趣是學習的動力

  大量事實都證明一點,與生活貼得越近的東西最容易引起學習者的濃厚興趣,才能激發(fā)學習者的學習積極性,學習才可能是主動的.本節(jié)課中教師首先用拼圖游戲引發(fā)學生學習的欲望,把課程內(nèi)容通過學生的生活經(jīng)驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學中,不要盲目的搶時間,讓學生能夠充分的思考與操作.

  (二)化抽象為具體

  常言道:“數(shù)學是鍛煉思維的體操”,數(shù)學教師應(yīng)通過一系列數(shù)學活動開啟學生的思維,因此對新數(shù)的學習不能僅僅停留于感性認識,還應(yīng)要求學生充分理解,并能用恰當數(shù)學語言進行解釋.正是基于這個原因,在教學過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學生覺得新數(shù)并不抽象.

 。ㄈ⿵娀R間聯(lián)系,注意糾錯

  既然稱之為“新數(shù)”,那它當然不是有理數(shù),亦即不是整數(shù),也不是分數(shù),所以“新數(shù)”不可以用分數(shù)來表示,這為進一步學習“新數(shù)”,即第二課時教學埋下了伏筆,在教學中,要著重強調(diào)這一點:“新數(shù)”不能表示成分數(shù),為無理數(shù)的教學奠好基.

  數(shù)學八年級上冊教案 15

  教學目標:

  1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推力意識,主動探究的習慣,進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。

  2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進一步發(fā)展學生的說理和簡單的推理的意識及能力。

  重點難點:

  重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

  難點:勾股定理的發(fā)現(xiàn)

  教學過程

  一、創(chuàng)設(shè)問題的情境,激發(fā)學生的學習熱情,導入課題

  出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。

  出示投影2(書中的P2圖1—2)并回答:

  1、觀察圖

  1—2,正方形A中有_______個小方格,即A的面積為______個單位。

  正方形B中有_______個小方格,即A的面積為______個單位。

  正方形C中有_______個小方格,即A的面積為______個單位。

  2、你是怎樣得出上面的結(jié)果的?在學生交流回答的基礎(chǔ)上教師直接發(fā)問:

  3、圖

  1—2中,A,B,C之間的面積之間有什么關(guān)系?

  學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A。B,C的關(guān)系呢?

  二、做一做

  出示投影3(書中P3圖1—4)提問:

  1、圖

  1—3中,A,B,C之間有什么關(guān)系?

  2、圖

  1—4中,A,B,C之間有什么關(guān)系?

  3、從圖

  1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

  學生討論、交流形成共識后,教師總結(jié):以三角形兩直角邊為邊的`正方形的面積和,等于以斜邊的正方形面積。

  三、議一議

  1、圖

  1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

  2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?

  在同學的交流基礎(chǔ)上,老師板書:

  直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

  那么我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

  3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

  四、想一想

  這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

  五、鞏固練習

  1、錯例辨析:

  △ABC的兩邊為3和4,求第三邊

  解:由于三角形的兩邊為3、4

  所以它的第三邊的c應(yīng)滿足=25

  即:c=5

  辨析:

 。1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題△ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

  (2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

  綜上所述這個題目條件不足,第三邊無法求得。

  2、練習P

  7 §1.1 1

  六、作業(yè)

  課本P7 §1.1 2、3、4

【數(shù)學八年級上冊教案】相關(guān)文章:

數(shù)學八年級上冊教案03-02

初中數(shù)學八年級上冊教案02-06

八年級上冊數(shù)學函數(shù)教案03-09

八年級數(shù)學上冊教案02-27

數(shù)學八年級上冊教案15篇03-02

八年級上冊數(shù)學教案01-13

八年級上冊數(shù)學優(yōu)秀教案01-23

八年級數(shù)學上冊教案06-08

八年級數(shù)學上冊的教案07-09