中文国产日韩欧美视频,午夜精品999,色综合天天综合网国产成人网,色综合视频一区二区观看,国产高清在线精品,伊人色播,色综合久久天天综合观看

六年級數(shù)學上冊《圓的面積》教案

時間:2023-03-07 19:00:04 數(shù)學教案 我要投稿

六年級數(shù)學上冊《圓的面積》教案

  作為一位不辭辛勞的人民教師,可能需要進行教案編寫工作,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整。那么優(yōu)秀的教案是什么樣的呢?下面是小編為大家整理的六年級數(shù)學上冊《圓的面積》教案,希望對大家有所幫助。

六年級數(shù)學上冊《圓的面積》教案

六年級數(shù)學上冊《圓的面積》教案1

  【圖解教材】

  利用光盤幫助學生理解求圓環(huán)的面積是利用外圓的面積減去內(nèi)圓面積。

  【課時目標】

  1、學會已知圓的周長求圓的面積的解題思路與方法,理解并學會環(huán)形面積。

  2、培養(yǎng)學生靈活、綜合運用知識的能力,運用所學的知識解決簡單的.實際問題。

  3、培養(yǎng)學生的邏輯思維能力。

  【教學重點】求圓環(huán)的面積的方法。

  【教學難點】運用所學知識解決實際問題。

  【教學過程】

  一、復習

  1、口算:

  32 42 52 82 92 202

  2π 3π 6π 10π 7π 5π

  2、思考:

 。1)圓的周長和面積分別怎樣計算?二者有何區(qū)別?

 。2)求圓的面積需要知道什么條件?

 。3)知道圓的周長能夠求它的面積嗎?

  二、新課

  1、教學練習十六第3題

  小剛量得一棵樹干的周長是125.6cm,這棵樹干的橫截面積是多少?

  已知:c=125.6厘米 s=πr2

  r:125.6÷(2×3.14) 3.14×202

  =125.6÷6.28 =3.14×400

  =20(厘米) =1256(平方厘米)

  答: 這棵樹干的橫截面積1256平方厘米。

  3、教學環(huán)形面積。

 。1)例2 光盤的銀色部分是個圓環(huán),內(nèi)圓半徑是2cm,外圓半徑是6cm。它的面積是多少?

  已知:R=6厘米 r=2厘米 求: s=?

  3.14×62 3.14×22

  =3.14×36 =3.14×4

  =113.04(平方厘米) =12.56(平方厘米)

  113.04-12.56=100.48 (平方厘米)

  第二種解法:3.14×(62-22)=100.48(平方厘米)

  (2)小結(jié):環(huán)形的面積計算公式:

  S=πR2-πr2 或 S=π×(R2-r2)

 。3)完成做一做: 一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?

  三、課堂小結(jié);

  四、板書設計:

  【評價方案】

  一、達標測評

  ●學校有個圓形花壇,周長是18.84米,花壇的面積是多少?

  選擇正確算式

  A、(18.84÷3.14÷2)2×3.14

  B、(18.84÷3.14)2×3.14

  C、18.842×3.14

  ●環(huán)形鐵片,外圈直徑20分米,內(nèi)圓半徑7分米,環(huán)形鐵片的面積是多少?

  ●課堂小結(jié)。

 。1)這節(jié)課的學習內(nèi)容是什么?

 。2)求圓的面積時題中給出的已知條件有幾種情況?怎樣求出圓面積?

  已知半徑求面積 S=πr2

  已知直徑求面積 S=π()2

  已知周長求面積 S=π()2

  (3)環(huán)形面積: S=π(R2-r2)

  二、效度評價

  參評人數(shù)( )

  題號

  1

  2

  3

  答對人數(shù)

  正確率

  三、教學反思

  學生參與程度

  教學目標達成度

  經(jīng)驗積累

  問題分析

  改進措施

六年級數(shù)學上冊《圓的面積》教案2

  【教學目標】

  知識技能:讓學生理解圓面積的含義,經(jīng)歷猜想、操作、驗證、討論和歸納等過程,探索并掌握圓的面積計算公式的推導過程及其公式的應用。

  數(shù)學思考:經(jīng)歷自主探索圓的面積計算公式的推導過程,體會和掌握“轉(zhuǎn)化”和“極限”的數(shù)學思想方法,發(fā)展空間觀念。

  問題解決:培養(yǎng)學生發(fā)現(xiàn)和提出問題,分析和解決問題的能力。

  情感態(tài)度:培養(yǎng)學習數(shù)學的興趣,增強合作交流的意識,在提升自我的同時,尊重他人,在表現(xiàn)自我的同時,心中有他人。

  【教學重點】

  掌握圓的面積計算公式,能夠正確地計算圓的面積。

  【教學難點】

  理解圓的面積計算公式的推導過程。

  【教學準備】

  (1)軟硬件設備:多媒體教學課件、平板互動系統(tǒng)、教師和學生平板終端,

 。2)教具:圓紙片、不同等分的圓卡片

 。3)學具:剪刀、圓紙片、不同等分的圓卡片。

  【教學過程】

  學生課前完成課前導學案(后附課前導學案的內(nèi)容)

  一、課前互動:

  師:同學們,前段時間我看到了一個很有意思繪本故事,想看嗎?大家請看,其中一張圖片是這樣的,猜一猜最后的這一棵盆栽會長出怎樣的圖形呢?為什么?

  生:越來越接近圓形。

  生:圓形,因為從三角形開始,然后到正方形、正五邊形……圖形越來越接近圓形。

  師:說的太好,看來我們班的同學們都是觀察能力強,思維敏捷的同學。隨著正多邊形邊數(shù)越來越多,越來越多,這個圖形就會越來越接近一個圓了

  師:哪一個圖形最特別。

  生:圓形,因為它是曲線圍成的圖形,其它是由線段圍成的圖形。

  師:真棒,其實這一張圖片蘊藏著一個非常重要的數(shù)學思想,這個思想幫助我們解決了一個歷史難題,想知道是什么思想嗎?

  生:想。

  師:那么希望通過這節(jié)課的學習,大家會有所感悟。下面我們就開始上課了。上課。

  二、創(chuàng)設情境,引發(fā)問題

  師:同學們,我們已經(jīng)認識了圓,知道了怎樣求圓的周長,今天這節(jié)課我們要研究的內(nèi)容是圓的面積。(板書課題)

  師:看到課題你最想研究什么問題?

 。A設)生:什么是圓的面積?

  (預設)生:如何求圓的面積?

  師:問的好,能提出問題的一定是會思考的同學,很多偉大的發(fā)明往往從提問開始,我們來整理一下提出的問題,主要是:圓的面積是什么?如何求圓的面積?(教師板書:是什么?如何求?)

  【設計意圖】數(shù)學課程標準提出四基和四能,其中一項是培養(yǎng)學生提出問題的能力,這也是很多教師所忽視的環(huán)節(jié),通常讓學生提問題的環(huán)節(jié)讓本課的研究更能激發(fā)學生的興趣,針對性更強。

  師:現(xiàn)在我們逐個問題來解決。請看,這里有一個圓(出示一個圓的方框)誰來說一說什么是這個圓的面積?

 。A設)生:圓的大小就是它的面積,

  師:說的對,是這一部分的大小嗎?(課件把圓填充顏色)

  師:(拿出手表)那么,什么是這個圓形手表鏡面的面積?(手表鏡面占平面的大。詧A占平面的大小就是它的面積,看來,“什么是圓的面積”這個問題大家很容易就解決了。

 。ㄕn件出示)

  師:接著我們來研究如何求圓的面積。請看,第一個正方形是由四個小正方形組成的,每個小正方形的邊長是r,那么每個小正方形的面積大家會求嗎?(會,是r×r,也就是r2),這個大正方形的面積就是4

  r2,等于4個小正方形的面積之和,大家猜一猜第二個正方形的面積大約等于幾個這樣的小正方形的面積呢?

 。A設)生:2個小正方形的面積

 。A設)生:3個小正方形的面積

  師:這樣猜還是有一點困難,根據(jù)我們以前的經(jīng)驗,可以把第二個正方形重疊到第一個圖像上來比比。

 。A設)生:等于兩個正方形的面積之和,也就是2r2,。

  師:那么這個圓的面積呢?還要重疊過來嗎?

  師:原來這個圓的半徑和小正方形的邊長是相等的。誰來說說這個圓的面積是多少?

 。A設)生:大約是3r2

  師:能確定?為什么不估2r2和4r2

 。A設)生:因為里面這個綠色的正方形的面積是2r2,圓的面積比它大,而藍色大正方形的面積是4r2,圓的面積比它小。所以我估算是3r2.

  師:分析得有道理,太棒了,通過這比較的辦法,我們知道了圓的面積的范圍,就是大于2個以圓的半徑為邊長的正方形面積之和,小于4個小正方形面積之和。這也是數(shù)學上經(jīng)常說的“內(nèi)外逼近”的方法。

 。ㄕn件出示)兩個正方形的面積<圓的面積<4個正方形的面積

  2r2<S圓<4r2

  師:那么圓的面積與r2(也就是與以圓的半徑為邊長的這個小正方形的面積),是否存在一個固定的倍數(shù)關(guān)系呢?如果有,又是幾倍的關(guān)系呢?根據(jù)課前我對多個學校六年級學生的調(diào)查,發(fā)現(xiàn)主要有以下的幾種想法。

 。ㄆ桨咫娔X出示題目和選項:那么圓的面積與它的r2是否存在一個固定的倍數(shù)關(guān)系呢?如果存在,它是幾倍的關(guān)系呢?

  A:圓的面積是它的r2的3倍

  B:圓的面積是它的r2的3.5倍

  C:圓的面積是它的r2的π倍

  D:圓的面積是它的r2存在其他的倍數(shù)關(guān)系

  D:圓的面積與它的r2不存在固定的倍數(shù)關(guān)系)

  師:你認同哪一種呢?請大家根據(jù)剛才的分析和昨天課前的思考,在平板電腦上獨立作出選擇。(學生選完后系統(tǒng)對數(shù)據(jù)進行統(tǒng)計,并出示條形統(tǒng)計圖)

  師:有30%的同學認為圓的面積是它的r2的3倍

  ,有50%的同學認為圓的面積是它的r2的π倍,還有少部分同學有其他的想法。太棒了,這些都是我們自己珍貴的猜想,很多偉大的發(fā)明都是來源于猜想,至于這些猜想是否正確呢?就要進行驗證,最后得出結(jié)論(板書:猜想、驗證、結(jié)論)現(xiàn)在我們一起進入驗證的環(huán)節(jié),請大家先思考一下,你打算怎樣驗證自己的猜想,可以獨立思考或小組合作,也可以結(jié)合昨天的課前小研究、還可以利用桌面的圓紙片。比一比誰最快有思路。開始吧!

  【設計意圖】通過比較圓與小正方形的面積關(guān)系,不僅讓學生鞏固了圓面積的概念,初步了解圓的面積在2

  r2與4

  r2之間,還體會了“內(nèi)外逼近”的數(shù)學思想。另外,在學生提出猜想的環(huán)節(jié)加入平板互動系統(tǒng)的統(tǒng)計,更加清晰和全面地反映了學生的思維困惑,更加直面學生的認知基礎,既關(guān)注了全體學生的培養(yǎng),又重視了學生的個性化發(fā)展,給學生提供了一個更大的學習空間,充分地體現(xiàn)先學后教的教學理念。

  三、啟發(fā)探究,嘗試驗證

  (一)數(shù)格子驗證

  師:誰來說說你的想法?

 。A設)生:可以利用數(shù)格子的方法。

 。▽W生的課前研究單上有一個半徑是3厘米的圓)

  (預設)生:我數(shù)了半徑是3厘米的圓,不滿一個的算半格,每個格子是1平方厘米,圓的面積大約26格。所以面積大約是26平方厘米。

  師:數(shù)格子(板書:數(shù)格子),很好的思路,數(shù)出圓的面積再除以半徑的平方就可以知道它們之間的倍數(shù)關(guān)系了。26除以半徑的平方大約等于3,大家覺得這個思路怎樣?這樣數(shù)出來的得數(shù)有誤差嗎?

 。A設)生:有,這些不滿格的要估算。

  師:有道理,你看,這些不滿格的還有這么大面積需要估算(指著圖),那么,有什么辦法提高數(shù)格子的精準度?如果把格子變小一點,像這樣(課件出示下圖)估算的誤差會不會小一點。

 。A設)生:會,因為這樣需要估算的面積就會越少,所以更準確。

  (課件展示)

  師:如果繼續(xù)把格子變小,無限地變小,想象一下,這樣數(shù)出來的結(jié)果就會(就會很準確了)。

  師:講得太棒了,像這樣把格子無限地平均分,其實相當于把圓平均分成無數(shù)個格子,這種思想就是我們數(shù)學常說的極限思想。(板書:數(shù)格子

  極限思想)

  師:但是,如果格子分得太細的.話,我們能數(shù)得過來嗎?(不能),看來,通過數(shù)格子的辦法也很難準確地求出圓的面積,還有沒有別的思路?

  【設計意圖】數(shù)格子是學生計算新圖形面積的常用辦法,通過匯報“課前研究單”中數(shù)圓的面積,并比較格子的大小對估算圓面積大小的影響,讓學生初步感受數(shù)格子中的極限思想,同時引出了數(shù)格子的不足,為下一步把圓平均分成無數(shù)個近似三角形埋下伏筆。

  (二)“對折”驗證

 。A設)生:我用對折的辦法,把圓對折、再對折、再對折,折到這么小,就很像一個三角形,這樣就可以求出三角形的面積,再乘以三角形的數(shù)量就是圓的面積了。

  師:真棒,思路非常獨特,你覺得同學們都聽懂了嗎?你覺得哪個地方同學們不是很理解,還要重點再講講?

 。A設)生:要盡量折得小一點,這樣圓的這條曲邊就會越來越直(邊操作,邊說),這樣就會越來越近似于三角形。

  師:大家同意嗎?太厲害了,我覺得這里應該有掌聲。這個同學用對折的辦法,相當于把圓平均分成若干份,(拿著學生的圓)平均分成4份的時候,這個近似三角形的底邊還是比較彎曲的,對折幾次后這個近似三角形的底邊就會越來直了,如果讓這條邊變得更直的話,我們要怎樣做?

  (預設)生:再對折。

  師:折一折,看一看,這條邊是不是更直了,再對折看看

  (預設)生:太小了,折不了,

  師:沒關(guān)系,紙片折不了,我們可以利用平板電腦幫忙,請大家打開平板,繼續(xù)把圓平均分,看看有什么發(fā)現(xiàn)(學生利用平板電腦點擊把圓平均分成32、64、128份)

  師:(學生展示平均分成128份)這是大家平板上的畫面,你來說說。

 。A設)生:隨著平均分的分數(shù)越多,這條邊就會越直,128等分的時候,這條邊已經(jīng)很直了。

  師:請大家閉上眼睛想象一下,如果繼續(xù)無限地平均分,這條底邊就會(簡直就變成直線了)

  師:太棒了,剛才同學們想到了,把圓平均分(板書:平均分)成無限個近似的三角形,這樣每個近似三角形的這條曲邊就會無限的接近于直線,這就是極限思想的魅力,它能畫曲為直(板書:化曲為直),然后只要求出一個近似三角形的面積,再乘三角形的數(shù)量就等于圓的面積了。

  【設計意圖】這一環(huán)節(jié)很多教師的做法是讓學生折紙以后再用課件展示,這種做法中學生的體驗是不足的,因此在這里引入平板電腦的手段,讓學生不但可以通過折一折,還能利用平板電腦把圓平均分成更多等分,再結(jié)合分享和展示,增加學生在操作中的體會和經(jīng)歷,更加直觀地理解化曲為直和極限數(shù)學思想。

  (三)等積轉(zhuǎn)化驗證

  師:還有其他的思路嗎?

 。A設)生:把圓平均分后再拼成我們學過的圖形,就像把平行四邊形剪拼成長方形。

  師:說得好,你的思維很敏銳,厲害,轉(zhuǎn)化,把未知轉(zhuǎn)化成已知,像求平行四邊形面積的時候,把它剪拼轉(zhuǎn)化成長方形,然后再推導出計算公式,這樣就不用數(shù)近似三角形的數(shù)量了,直接就能求出圓的面積就,不如我們一起來試試看。(板書:轉(zhuǎn)化

  、推導)

  師:在每人的平板電腦上里都有4等分、8等分、16等分的圓,也可以利用等分圓的學具,還可以利用圓紙片進行任意的剪拼,請以小組為單位展開探索

  活動要求:1.拼一拼。將等分后的圓拼成一個我們學過的圖形。

  2.比一比,拼成的圖形中哪一個更接近于我們學過的圖形。

 。▽W生在小組內(nèi)操作的畫面在講臺的一體機中流動顯示)

  師:誰來說說你的發(fā)現(xiàn),你是幾號平板(馬上在一體機中調(diào)出學生的畫面)

 。A設)生:16等分的圓拼成的圖形更接近于我們學過的平行四邊形。因為16等分拼成的圖形的底邊是最直的。

  師:為什么會最直呢?

  (預設)生:像剛才一樣,平均分成的分數(shù)越多,每一份就越近似于一個三角形,底邊就越直,拼成的圖形就越近似于平行四邊形。

  師:如果像這樣繼續(xù)平均分,會變成怎樣呢?請打開平板系統(tǒng),繼續(xù)試一試(每人的平板出示32、64、128等分的圓)

  師:誰來講講發(fā)現(xiàn)。

 。A設)生:你看,等分圓的份數(shù)越多,拼成的圖形的底邊會越來越直,而且(指著圖形的兩條寬)左右兩條邊跟底邊就越接近于垂直,所拼成的圖形越接近于長方形。

  師:請大家閉上眼睛想象一下,如果像這樣繼續(xù)無限地平均分,平均分成256分等等……,然后再拼起來,拼成的圖形就會無限的接近一個長方形了,這個極限思想太了不起了,不僅能畫曲為直,還能化圓為方。(板書:化圓為方)

  我建議我們要把這個過程留在板書上,我們通過把圓平均分成若干個近似的小三角形,然后拼成近似的長方形,隨著無限地平均分,這樣拼成的圖形就會無限地接近一個真正的長方形。(板書:16等分的圓拼成的圖形和一個長方形)

  【設計意圖】這一環(huán)節(jié)融合信息技術(shù)手段能有效打破傳統(tǒng)學具的限制,傳統(tǒng)的學具最多把圓平均分成32份,這樣拼起來的圖形與長方形還是有很大的區(qū)別,理解化圓為方的思想有些困難。當信息技術(shù)與傳統(tǒng)學具融合后,學生不僅能更直觀、更方便地探究,而且又避免了信息化手段容易固化學生研究思維的缺點,讓學生還能利用常規(guī)學具進行隨意剪拼,這樣學生研究的素材更多元化。另外,通過平板系統(tǒng),學生在探究和分享、師生互動、學生間互相學習的過程中都能隨時調(diào)用畫面到屏幕上進行互動。讓教學更加直觀形象,讓交流分享更加充分和完善,讓學生的互相學習更加有效。

  師:研究到這里,到了最關(guān)鍵的一步了,就是推導計算公式,這個過程是老師教你,還是大家自己來。

 。A設)生:自己來。

  師:真的,我就站在旁邊,有困難就舉手。

  四、尋找聯(lián)系、推導公式

  要求:

  想一想:近似長方形的長和寬與圓的什么有關(guān)呢?

  試一試:把推導的過程寫下來。

  師:我把這個畫面(圓形轉(zhuǎn)化成長方形的過程的畫面)發(fā)到大家的平板上,大家可以結(jié)合我們剛剛的發(fā)現(xiàn)來推導。

  學生分享:

 。A設)生:因為拼成的長方形的面積等于圓的面積,拼成的長方形的長近似于圓周長的一半,寬近似于圓的半徑,而且長方形的面積=長×寬,所以圓的面積=圓的周長的一半×圓的半徑,即S圓=C÷2×r。

  因為C=2πr,所以S圓=πr×r,S圓=πr2。

  師:我真沒想到我們班同學能把這個問題講的這么清楚,你覺得大家在哪一部分的理解還是有點欠缺呢?要不要再講講?

  (預設)生:我覺得長方形的長近似于圓周長的一半這點是比較難發(fā)現(xiàn)的,要這樣來看,在圓平均分成若干份后,把這些近似的小三角形分成了上下兩部分,例如下面這部分,這些小三角形的底邊就是原來圓的邊,它們的總長就是原來圓的周長的一半。

  【設計意圖】通過平板系統(tǒng)的引入,在推導公式的過程中,每個小組不僅可以把推導的過程發(fā)送到互動平臺讓其他小組互相學習,而且在分享中也能隨時調(diào)出其他小組的作品加以質(zhì)疑和評價,從而提高了學習的深度學習。

  師:太棒了,見過厲害的,但是沒見過這么厲害的,掌聲鼓勵一下。

  師:經(jīng)過大家的研究我們似乎把公式推導出來了,我們一起來整理一下,

  師:拼成的近似長方形的面積等于圓的面積,長方形的長近似于圓周長的一半,寬近似于圓的半徑,長方形的面積=長×寬,所以圓的面積=圓的周長的一半×圓的半徑,即S圓=C÷2×r。

  因為C=2πr,所以S圓=πr×r,S圓=πr2。

  (板書)

  S長方形=長×寬

  S圓=周長的一半×半徑=C÷2×r=2πr÷2×r=πr2

  師:太好了,終于把公式推導出來了,原來圓的面積就等于它半徑的平方再乘π,圓的面積與它半徑的平方之間是π倍的關(guān)系,哪些同學猜對了(學生舉手),掌聲表揚,你們有數(shù)學家的眼光。沒猜對的同學也不要緊,因為你們已經(jīng)把公式推導出來了,也掌聲鼓勵。你知道嗎,在古代,曾經(jīng)有很多的數(shù)學家對圓的面積做了詳細的研究,其中比較著名的就是魏晉數(shù)學家劉徽的千古絕技

  “割圓術(shù)”請看。

  五、感受數(shù)學文化的魅力

  (展示魏晉數(shù)學家劉徽割圓術(shù)視頻)

  師:劉徽在當時這么簡單的條件下計算了正3072邊形面積。他提出的計算圓周率的科學方法,奠定了此后一千多年來,中國圓周率計算在世界上的領先地位。此時此刻我再一次為我國古代的數(shù)學文化感到震撼和自豪。而且,這也是我們課前小游戲的奧秘,無限分割和極限思想。所以我也為大家在這節(jié)課上的發(fā)現(xiàn)和總結(jié)感到驕傲。

  【設計意圖:通過介紹魏晉數(shù)學家劉徽的割圓術(shù),讓學生進一步感受優(yōu)秀傳統(tǒng)中國數(shù)學文化,不僅增加了民族自豪感,還培養(yǎng)了數(shù)學素養(yǎng)】

  六、鞏固知識,實際應用

  師:既然已經(jīng)我們推導出圓的面積公式,接著來嘗試運用公式來解決實際的問題(板書:運用),你會嗎?(會)

  1.一個圓形沙井蓋的半徑是30厘米,這是沙井蓋表面的面積是多少?

  2.一個圓形花壇的周長是12.56米,這個花壇的面積是多少?

  七、全課總結(jié),課堂延伸

  師:大家請看(指著板書),我們班的同學太棒了,一節(jié)課下來有了那么多的總結(jié),如果要圈出本課的重點,你覺得要圈什么?(圈出本課的核心)

 。A設)生:S圓=πr2

  、轉(zhuǎn)化、化曲為直、極限……

  師:剛才我們遇到問題的時候,采取了什么策略,(猜想、驗證、結(jié)論、運用),在驗證的過程中運用了什么方法(轉(zhuǎn)化、化曲為直、極限思想)

  師:對于圓的面積你有什么新的思考。

 。A設)生:圓的面積還有其他的推導方法嗎?

  師:問的好,生活中還有很多的有趣的推導圓面積的方法,例如可以把它拼成一個三角形甚至是拼成梯形,大家可以帶著這個問題回去繼續(xù)探索,只要大家用數(shù)學的眼光和數(shù)學解決問題的方法去研究,你會有更多的發(fā)現(xiàn)。這節(jié)課就上到這里,下課。

  八、布置作業(yè)

  書本第68頁做一做的第一題。

 。}目:一個圓形茶幾的直徑是1M,它的面積是多少平方米?)

  2、書本71頁第4題。

 。}目:小剛量得一顆樹干的周長是125.6cm,這棵樹干的橫截面近似于圓,它的面積大約是多少?)

  3、嘗試用不同的方法推導出圓的面積計算公式,下一節(jié)課與同學們分享。

  九、板書設計

  附錄:《課前導學案》

  《圓的面積》課前小研究工作紙

  班別:

  學號:

  姓名:

  同學們!大家好,上一節(jié)課我們已經(jīng)學習了圓的周長,接著要學習什么呢?當然是圓的面積啦!還等什么呢,趕快出發(fā)吧,馬上進入數(shù)學的神奇世界……

  同學們,看到《圓的面積》這個課題,你想到什么問題?請把它寫下來。(寫2-3個問題)

  2、請大家先觀察下面圖,你知道圓的面積和這個小正方形的面積有什么關(guān)系?

  圓的面積小于于()個小正方形的面積

  我們可以這樣分析:

  圓的面積大于()個小正方形的面積

  ()<圓的面積<()

  3、我們還可以通過數(shù)格子的辦法數(shù)出圓的面積,試試看吧!

  圖中每個格子的面積是1平方厘米,圓的半徑是3厘米,請你數(shù)一數(shù),這個圓形的面積大約占了()個格子,所以圓的面積大約是()平方厘米。

  (為了方便數(shù)數(shù),你可以在格子中寫數(shù)字或作記號)

  4、圓可以轉(zhuǎn)化成我們學過的圖形嗎?

 。1)圓可以轉(zhuǎn)化成()形,請畫圖說明。轉(zhuǎn)化后的圖形與圓有什么關(guān)系?你能嘗試推導圓的面積計算公式嗎?

 。2)除了書本的推導辦法,還有其它的辦法推導出圓的面積嗎?可以和家長一起探索,也可以上網(wǎng)搜索查詢。

六年級數(shù)學上冊《圓的面積》教案3

  教學內(nèi)容:

  圓的面積。

  教學目標:

  1. 通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。

  2. 激發(fā)學生參與整個課堂教學活動的學習興趣, 培養(yǎng)學生的分析、觀察和概括能力,發(fā)展學生的空間觀念。

  3. 滲透轉(zhuǎn)化的數(shù)學思想和極限思想。

  教學重點:

  正確計算圓的面積。

  教學難點:

  圓面積公式的推導。

  學情分析:

  本課是在學生掌握了面積的含義及長方形、正方形等平面圖形面積的計算方法,認識了圓,會計算圓的周長的基礎上進行教學的,教學時要注意遵循學生的認識規(guī)律,重視學生獲取知識的思維過程,重視從學生的生活經(jīng)驗和已有的知識出發(fā)。

  學法指導:

  教學本課時,重點引導學生提出將圓割拼成已學過的圖形,組織學生動手操作,讓學生主動參與知識形成的過程,從而培養(yǎng)學生的創(chuàng)新意識、實踐能力,并發(fā)展學生的空間觀念。

  教具準備:

  多媒體課件,圓片。

  學具準備:

  把圓片分成十六等分,并按課本圖所示,剪拼并貼成近似長方形。

  教學設計:

  一、復習舊知,導入新課

  1. 前面我們學習了圓、圓的周長。如果圓的半徑用r表示,周長怎樣表示?(2πr)周長的一半怎樣表示?(πr)

  2. 課件:出示一塊圓形的桌布。如果要給這塊桌布的邊縫上花邊,是求什么?(圓形桌布的周長)

  3.件:出示一塊圓形的鏡框。如果要鏡框配一塊玻璃,至少需要多大?是求什么?(圓的面積)誰能指出這個圓的面積?誰能概括一下什么是圓的面積?請同學們用手摸出學具圓的面積。

  提問:如果圓的半徑是2分米,你能猜猜這塊玻璃到底有多大?(同學們紛紛地猜測,有的`學生可能說這個圓面小于所在的正方形面積)

  這塊圓形玻璃有多大,就是要求圓形的面積,這節(jié)課我們一起來研究怎樣計算圓的面積。(板書課題:圓的面積)

  二、動手操作,探索新知

  1. 回憶平行四邊形、三角形、梯形面積計算公式推導過程。

  (1)以前我們學習了平行四邊形、三角形和梯形的面積計算公式。請同學們回想一下,這些圖形的面積計算公式是怎樣推導出來的?(學生回答,師用課件演示。)

 。2)通過回憶這三種平面圖形面積計算公式的推導,你發(fā)現(xiàn)了什么?(發(fā)現(xiàn)這三種平面圖形都是轉(zhuǎn)化為學過的圖形來推導出它們的面積計算公式。)

 。3)能不能把圓轉(zhuǎn)化為學過的圖形來推導出它的面積計算公式呢?那么同學們想一想,圓可能轉(zhuǎn)化為什么平面圖形來計算呢?

  2. 推導圓面積的計算公式。

  (1)拿出已準備好的學具,說說你把圓剪拼成了什么圖形?

 。2)學生小組討論。

  看拼成的長方形與圓有什么聯(lián)系?

  學生匯報討論結(jié)果。

 。3)課件演示:請看大屏幕,把圓分成16等份,拼成了近似平行四邊形,再分成32等份,拼成近似的平行四邊形,再分成64等份,拼成近似長方形,你發(fā)現(xiàn)什么?(如果分的份數(shù)越多,每一份就會越細,拼成的圖形就會越接近于長方形。)

 。4)你能根據(jù)長方形的面積計算公式推導出圓的面積計算公式嗎?小組討論一下。

  生邊答師邊演示課件。

  生答:因為拼成的長方形的面積與圓的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。

  因為長方形的面積=長×寬

  所以圓的面積=周長的一半×半徑

  S=πr × r S=πr2 師小結(jié)公式

  S=πr2,讓學生小組內(nèi)說說圓的面積是怎樣推導出來的?

 。5)讀公式并理解記憶。

  (6)要求圓的面積必須知道什么?(半徑)

  3. 利用公式計算。

 。1)用新的方法算一算:剛才的玻璃到底有多大?看誰剛才猜得較接近。(學生計算并匯報)

  (2)出示例3,學生嘗試練習,反饋評價。

  提問:如果這道題告訴的不是圓的半徑,而是直徑,該怎樣解答?不計算,誰知道結(jié)果是多少嗎?

 。3)完成第95頁做一做的第1題。

  (4)看書質(zhì)疑。

  三、運用新知,解決問題

  1. 求下面各圓的面積,只列式不計算。(CAI課件出示)

  2. 測量一個圓形實物的直徑,計算它的周長及面積。

  3. 課件演示

  用一根繩子把羊栓在木樁上,演示羊邊吃草邊走的情景。(生看完提問題并計算)(羊吃到草的最大面積即最大圓面積是多少?)

  四、全課小結(jié)

  這節(jié)課你自己運用了什么方法,學到了哪些知識?

  五、布置作業(yè)

  1. 第97頁的第3題和第4題。

  2. 找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)

  測量物、直徑(厘米)、半徑(厘米)、面積(平方厘米)

  板書設計:

  圓的面積

  長方形的面積= 長× 寬

  圓的面積=周長的一半×半徑

  S=πr×r

  S=πr2

六年級數(shù)學上冊《圓的面積》教案4

  教學目標

  1.使學生理解圓面積公式的推導過程,掌握求圓面積的方法并能正確計算;

  2.培養(yǎng)學生動手操作的能力,啟發(fā)思維,開闊思路;

  3.滲透初步的辯證唯物主義思想。

  教學重點和難點

  圓面積公式的推導方法。

  教學過程設計

  (一)復習準備

  我們已經(jīng)學習了圓的認識和圓的周長,誰能說說圓周長、直徑和半徑三者之間的關(guān)系?

  已知半徑,圓周長的一半怎么求?

  (出示一個整圓)哪部分是圓的面積?(指名用手指一指。)

  這節(jié)課我們一起來學習圓的面積怎么計算。

  (板書課題:圓的面積)

  (二)學習新課

  1.我們以前學過的三角形、平行四邊形和梯形的面積公式,都是轉(zhuǎn)化成已知學過的圖形推導出來的`,怎樣計算圓的面積呢?我們也要把圓轉(zhuǎn)化成已學過的圖形,然后推導出圓面積的計算公式。

  決定圓的大小的是什么?(半徑)所以,分割圓時要保留這個數(shù)據(jù),沿半徑把圓分成若干等份。

  展示曲變直的變化圖。

  2.動手操作學具,推導圓面積公式。

  為了研究方便,我們把圓等分成16份。圓周部分近似看作線段,其

  用自己的學具(等分成16份的圓)拼擺成一個你熟悉的、學過的平面圖形。

  思考:

  (1)你擺的是什么圖形?

  (2)所擺的圖形面積與圓面積有什么關(guān)系?

  (3)圖形的各部分相當于圓的什么?

  (4)你如何推導出圓的面積?

  (學生開始動手擺,小組討論。)

  指名發(fā)言。(在幻燈前邊說邊擺。)

  ①拼出長方形,學生敘述,老師板書:

 、谶能不能拼出其它圖形?

  學生可以拼出:

  等等

  剛才,我們用不同思路都能推導出圓面積的公式是:S=r2。這幾種思路的共同特點都是將圓轉(zhuǎn)化成已學過的圖形,并根據(jù)轉(zhuǎn)化后的圖形與圓面積的關(guān)系推導出面積公式。

  例1 一個圓的半徑是4厘米,它的面積是多少平方厘米?

  S=r2=3.1442=3.1416=50.24(平方厘米)

  答:它的面積是50.24平方厘米。

  想一想;求圓面積S應知道什么?如果給d和C,又怎樣求圓面積?

  (三)鞏固反饋

  1.求下面各圓的面積。

  r=2(單位:分米) d=6(單位:分米)

  2.選擇題。

  用2米長的繩子把小羊拴在草地上的木框上,羊吃到地上的草的最大面積是多少?

  (1)3.1422=12.56(米)

  (2)3.1422=12.56(平方米)

  (3)3.1432=28.26(平方米)

  3.思考題:

  已知正方形的面積是18平方米,求圓的面積。(如圖)

  課堂教學設計說明

  1.使學生運用遷移的方法,把新知識轉(zhuǎn)化為舊知識,把圓轉(zhuǎn)化成已經(jīng)學過的圖形。

  2.在面積公式推導過程中,老師介紹分割圓的方法,展示由曲變直的過程,然后引導學生動手操作,小組討論,從各個角度推導出圓面積公式。培養(yǎng)學生動手操作,口頭表達和邏輯思維的能力,滲透了極限和轉(zhuǎn)化思想。

  3.安排了坡度適當、由易到難的練習題,使學生由淺入深地掌握了知識,形成了技能。同時,還注意培養(yǎng)學生邏輯推理的能力。

六年級數(shù)學上冊《圓的面積》教案5

  教材分析

  1、《圓的面積》是人教版小學數(shù)學六年級上冊第五單元中的一節(jié)課,本節(jié)內(nèi)容包括教材67-71頁例1、例2及69頁“做一做”。

  2、本節(jié)課是在學習了圓的周長以后進行教學的,為后面學習求陰影部分面積做了鋪墊。

  學情分析

  小學六年級學生在學習空間圖形方面,已經(jīng)具有一定的想象能力,并有了一定程度的計算能力,在學習方法上也有了一定的積淀,同時他們也具備一定的邏輯思維、抽象推理能力,他們能夠自主、合作、探究地進行學習,對學習數(shù)學的興趣濃厚。但是作為十來歲的學生,他們對事物的認識是十分有限的,加上他們的個人表現(xiàn)欲望十分強烈,自我控制能力差等因素的影響。因此 在教學時我憑借課件 結(jié)合學生的'實際情況, 聯(lián)系學生已有的知識點 設計教學環(huán)節(jié)確定教學方法, 確立教學重點、難點和目標 減少盲目性 注意培養(yǎng)學生的動手動腦能力,讓學生通過動手把圓等分成16等份和32等份,學會用轉(zhuǎn)化的思想找到圓的面積計算公式,讓學生在動腦動手中掌握知識。

  教學目標

  一、知識與技能

  1、學生通過觀察、操作、分析和討論,推導出圓的面積公式。

  2、能夠利用公式進行簡單的面積計算。

  3、培養(yǎng)學生空間概念和邏輯思維能力。

  二、過程與方法

  經(jīng)歷從未知轉(zhuǎn)化已知過程,體驗自主探究,合作交流的方法。

  三、情感態(tài)度與價值觀

  滲透轉(zhuǎn)化思想,初步了解極限思想,培養(yǎng)學生的觀察能力和動手操作能力。

  教學重點和難點

  重點:正確計算圓的面積。

  難點:圓的面積公式推導過程。

【六年級數(shù)學上冊《圓的面積》教案】相關(guān)文章:

數(shù)學圓的面積教案02-14

圓的面積的數(shù)學教案01-21

小學數(shù)學圓的面積的教案04-18

小學數(shù)學《圓的面積》教案02-23

六年級數(shù)學上冊教案圓的面積03-15

數(shù)學圓的面積教案15篇02-14

小學數(shù)學《圓的面積》優(yōu)秀教案09-06

數(shù)學冀教版六年級上冊《圓的面積》教案08-26

圓的面積教案05-08