小學數(shù)學教案5篇【合集】
在教學工作者實際的教學活動中,時常要開展教案準備工作,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當?shù)慕虒W方法。教案應該怎么寫呢?下面是小編幫大家整理的小學數(shù)學教案5篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
小學數(shù)學教案 篇1
教學目標:
1.知識與技能
明確假分數(shù)與帶分數(shù)、整數(shù)之間的關系;
會進行假分數(shù)和整數(shù)、假分數(shù)和帶分數(shù)之間的互化.
2.過程與方法
經(jīng)歷自主探索假分數(shù)和整數(shù)互化、假分數(shù)和帶分數(shù)互化的過程,掌握它們互化的方法.
3.情感、態(tài)度與價值觀
在運用已有知識探索新知識的過程中,獲得成功的體驗.
教學重點:
會進行假分數(shù)和整數(shù)、假分數(shù)和帶分數(shù)之間的互化.
教學難點:
會進行假分數(shù)和整數(shù)、假分數(shù)和帶分數(shù)之間的互化.
教學準備:
幻燈片.
教學過程:
一、鋪墊孕伏
教師出示幾道口算題,讓學生回答.
通過出示幾道口算題,明確分數(shù)的意義,為下面整數(shù)化假分數(shù)作鋪墊.
1.口算.
0.45÷15;1.53-0.7;0.4×0.8;
4.8×0.02;0.3÷1.5
2.口答.
。1)各表示什么意義?
。2)2個是幾分之幾?
5個是幾分之幾?
12個是幾分之幾?
二、整數(shù)化假分數(shù)
1.提出“把1、2化成分母是3的假分數(shù)”的要求,讓學生自主嘗試,然后交流結果.
教師提出問題,先鼓勵學生自己動腦思考,然后師生一起解決問題,最后教師應引導學生大膽表達自己的想法,明確解答的過程.
師:把1、2化成分母是3的假分數(shù).
學生思考,自主嘗試,然后教師在標有1、2、3、4、5的直線上表示出來.
師:說一說你是怎樣想的.
生:1里面有3個,是,2里面有(2×3)個,是。
……
2.
教師提出問題.
鼓勵學生自己結論.
師:整數(shù)怎樣化成假分數(shù)?
學生相互交流、討論.
師:以指定的分母作分母,分母與整數(shù)的乘積作分子.
3.練一練
熟練掌握轉化方法。
。1)把2、4、7分別化成分母是3、2、3的假分數(shù);
。2)把3、4、5化成分母是3的假分數(shù).
師引導學生:整數(shù)(0除外)可以化成分母是任意自然數(shù)(0除外)的假分數(shù)。
三、假分數(shù)化整數(shù)或帶分數(shù)
1.出示例題
教師出示例題,師生一起解決.
指導學生寫出假分數(shù)和帶分數(shù),再讓學生觀察,討論直線上同一個點假分數(shù)和帶分數(shù)的關系,使學生了解對應的假分數(shù)分子除以分母,商是帶分數(shù)的整數(shù)部分,余數(shù)是分數(shù)部分的'學習.
問題:把下面直線上的點用假分數(shù)和帶分數(shù)表示出來.
。ㄕ故緢D片:例題二)
師生一起解決.
師:直線上同一個點假分數(shù)和帶分數(shù)的關系是怎樣的?
2.假分數(shù)化帶分數(shù)
1.師:怎樣把化成帶分數(shù)?
。ń處熡谜n件“分數(shù)的再認識(二)”演示)
2.練習:把、、化成帶分數(shù)。
方法:假分數(shù)分子除以分母,商是帶分數(shù)的整數(shù)部分,余數(shù)是分數(shù)部分.
3.帶分數(shù)化假分數(shù)
師:怎樣把、、化成假分數(shù)?
。ń處熡谜n件“分數(shù)的再認識(二)”演示)
方法:用帶分數(shù)的分母乘以帶分數(shù)的整數(shù)部分,所得的積再加上分子即得假分數(shù)的分子,假分數(shù)的分母與帶分數(shù)的分母相同。
4.試一試
列出式子,讓學生解答.
通過“試一試”讓學生假分數(shù)化成整數(shù)或帶分數(shù)的方法.
問題:把下面的假分數(shù)化成整數(shù)或帶分數(shù)
、、、、生:=15÷7=2……1
=24÷8=3
……
四、練一練
讓學生自行練習.
第1題,學生獨立完成后交流,說一說是怎樣想的.
第2題,先讓學生理解題目要求,然后自己完成,再全班交流.
第3題,是試一試的變式練習.指導學生弄懂題目要求,再自己涂色.
板書設計:
小學數(shù)學教案 篇2
第一課時:整數(shù)乘以小數(shù)
一、教學目標:
1、理解小數(shù)乘以整數(shù)的意義。
2、理解小數(shù)乘法整數(shù)和整數(shù)乘法相同。
3、學會小數(shù)乘以整數(shù)的計算方法。
二、教學重點:
學會小數(shù)乘以整數(shù)的計算方法。
難點:理解小數(shù)乘以整數(shù)的意義。
三、教學準備:
多媒體
四、教學過程:
A、準備題:
1、出示準備題P1 (多媒體投影)
a、全體學生填在書上。
b、學生相互間討論,你發(fā)現(xiàn)了什么規(guī)律?
學生小結:一個因數(shù)不變,另一個因數(shù)擴大(或縮。⿴ 倍,積也擴大(或縮。┫嗤谋稊(shù)。
2、填空
7。6擴大( )倍得76
0。034擴大( )倍得34
a、先填空,再列式算式。
B、講授新課:
、 出示例1 每筒面價1。8元,買4筒面付多少元?
1、讀題后,讓學生列出加法算式。
1。8 + 1。8 + 1。8 + 1。8 =7。2 (元) (板書)
2、列出乘法算式:1。8 × 4
a、提問:怎么計算?根據(jù)什么?同學間相互討論。
b、計算討論:① 先把被乘數(shù)擴大10倍得18。
、 然后按整數(shù)乘法算出得數(shù)。
、 被乘數(shù)擴大10倍,乘數(shù)不變,積也擴大10倍
、 要使積正確,應把積縮小10,得7。2。
c、比較:可用加法計算,也可用乘法計算。哪一種方法簡 便?
小結:小數(shù)乘以整數(shù)的意義和整數(shù)乘法相同,就是求什么?(幾 個相同加數(shù)和的.簡便運算。)
、 出示例2 每千克早米價2。16元,買25千克付多少元?
1、全體學生試做,教師巡視。
2、反饋討論,指出錯誤。計算結果末尾的0怎么處理?
3、歸納整數(shù)乘以小數(shù)的計算方法。
三、試一試: 1。25 × 7 = 0。42 × 19 =
a、說一說兩題的積各有幾位小數(shù)。為什么?
b、說一說 1。25 ×7 的意義。
C、鞏固練習
練一練 第一題、 第二題和第三題。
D、課堂總結
1、今天我們學習了什么新的內容?
2、小數(shù)乘以整數(shù)應該怎么計算?
E、布置作業(yè)
P3 第四題、第五題和第六題。
課后小結:
本課是小數(shù)乘法學習的第一課時,是在整數(shù)乘法意義和計算方法的基礎上學習的。所以一開始我就安排了"積的變化規(guī)律"探索練習,為新授打下基礎,引導學生探索發(fā)現(xiàn)規(guī)律,這一環(huán)節(jié)我試圖放手,但我的問題設計的太碎了,如果這樣設計問題,可能對學生的思維有一定的價值:(1)請同學們認真觀察這兩組算式,發(fā)現(xiàn)了什么規(guī)律?(2)要求把自己的發(fā)現(xiàn)說給你的同桌聽,(3)你能把自己的發(fā)現(xiàn)說給全班同學聽嗎?不完整的其他同學補充。對新授的內容"1。8 ×4"我想最好讓學生運用知識的遷移用自己以前的知識去解決,在關鍵處設計幾個問題點撥一下,這樣更能體現(xiàn)出學生的主動性。
小學數(shù)學教案 篇3
教學內容:
教材第38頁例1,練習十第1題。
教學目標:
1.使學生進一步了解條形統(tǒng)計圖的意義,學會看橫向的條形統(tǒng)計圖。
2.初步學會制作橫向的'條形統(tǒng)計圖。
3.能正確地分析條形統(tǒng)計圖,培養(yǎng)學觀察、分析和動手操作能力。
教學重難點:
初步學會制作橫向的條形統(tǒng)計圖。
教學過程:
一、創(chuàng)設情境,復習導入
出示:某商店6月3日-10日銷售四種礦泉水的統(tǒng)計表:
小學數(shù)學三年級下冊第三單元條形統(tǒng)計圖(一)教案
教師:我們怎樣表示才能使四種礦泉水的銷售情況一目了然?(畫條形統(tǒng)計圖)
生動手制作條形統(tǒng)計圖。
分析:從統(tǒng)計圖上,你看到了什么?
二、提出問題,引入新課
1、(利用復習題)教師:條形統(tǒng)計還可以用這樣畫。
比較:這兩張統(tǒng)計圖有什么不同?
教師:上一張數(shù)據(jù)標在縱軸上,礦泉水的品牌在橫軸上,而下一張數(shù)據(jù)標在橫軸上,礦泉水品牌標在縱軸上,我們把這樣的統(tǒng)計圖稱為橫向統(tǒng)計圖,現(xiàn)在請同學們把橫向條形統(tǒng)計圖補充完整。
教師:我們在畫縱軸和橫軸時,都畫上了一個箭號,表示縱軸和橫軸都可向上和向右無限延長。
根據(jù)這張條形統(tǒng)計圖,你想了解什么?把你想了解的內容在四人小組里交流。
2、小結:大家在畫條形統(tǒng)計圖時,想采用縱向條形統(tǒng)計圖還是橫向條形統(tǒng)計圖,可根據(jù)大家的需要自由選擇。
三、鞏固運用
教科書第40頁練習十的第1題。
。1)讓學生獨立完成前兩個小題,然后教師講評。
(2)你還能提出那些問題?
四、課堂小結:
本節(jié)課學習了什么?你有什么收獲?制作統(tǒng)計圖要注意什么?
教學反思:
小學數(shù)學教案 篇4
教學內容:
教材第81頁例3、例4,練習十六9---14題。
教學目標:
1、經(jīng)歷交流、討論、練習等學習過程,理解方程的含義和等式的性質,根據(jù)等式的性質正確熟練地解方程。
2、掌握解方程的方法及列方程解決問題的步驟,解決問題的關鍵是找出數(shù)量之間的相等關系,能根據(jù)題意正確地列出方程,解答兩、三步計算的問題。
3、能根據(jù)問題的特點選擇恰當?shù)姆椒▉斫獯穑M一步培養(yǎng)分析數(shù)量關系的能力,發(fā)展思維。
教學重點:
理解方程的含義和等式的性質。
教學難點:
較熟練地解簡易方程,并能解決一些實際問題。
教具準備:
多媒體課件
教學過程:
一、導入復習
1、什么叫做方程?(方程是含有字母的等式。)能舉幾個是方程的式子嗎?
2、什么叫做方程的解? (使方程兩邊左右相等的未知數(shù)的值叫做方程的解。求方程的解的過程,叫做解方程。)
3.解方程的依據(jù)是等式的性質:等式兩邊同時乘或除以(加或減去)相同的數(shù),等式的`大小不變。
4、出示例3 學生交流。
5、出示例4 學生交流。
二、創(chuàng)設情境,引出知識
1、出示:學校組織遠足活動。原計劃每小時走3.8km,3小時到達目的地。實際2.5小時走完了原定路程,平均每小時走了多少千米?(列方程解應用題)
解題過程
解:設現(xiàn)在平均每小時走了x千米。
2.5x=3.83
2.5x2.5=11.42.5
x=4.56
答:平均每小時走了4.56千米?
2、提出問題
這是我們熟悉的列方程解決問題,用方程解決問題是我們解題的一種方法。請你以小組為單位,合作自主梳理有關代數(shù)的知識。
三、分析知識建立聯(lián)系
。ㄒ唬⿲W生匯報各類知識
小組匯報知識,要求按照由淺入深的順序匯報,邊匯報教師邊完善,同時進行板書。
。ǘ┙夥匠膛c方程的解
1、具體知識
4.56是方程的解,而求這個解的過程就是解方程。
方程是含有字母的等式
補充提問:能舉幾個是方程的式子嗎?
小學數(shù)學教案 篇5
教學目的
1.通過復習,使學生能夠運用已學的知識解答應用題.
2.通過復習,使學生知道同一道題中,數(shù)量關系可以轉化,用不同方法解答.
3.使學生知道知識的內在聯(lián)系及其可以轉化的辯證唯物主義觀點.
教學重點
通過復習,使學生能夠運用已學的數(shù)量關系,正確解答應用題.
教學難點
通過復習,使學生知道同一道題中,數(shù)量關系可以轉化,用不同方法解答.
教學過程
一、復習準備.
1.導入:我們已經(jīng)復習了應用題的數(shù)量關系掌握了不同的應用題的不同分析、解答方法.今天我們就用我們學過的不同知識來解應用題.(板書課題:用不同知識解應用題)
2.填空:已知甲數(shù)是乙數(shù)的6倍.那么:
(1)乙數(shù)是甲數(shù)的
教師追問:為什么填 呢?這時兩個數(shù)的倍數(shù)關系轉化成了什么關系?
。2)甲數(shù)與乙數(shù)的比是( )∶( )
。3)甲數(shù)與甲乙兩個數(shù)的和的比是( )∶( )
(4)乙數(shù)與甲乙兩個數(shù)的和的比是( )∶( )
教師提問:這時兩個數(shù)的倍數(shù)關系轉化成了什么關系?
教師總結:通過復習,我們發(fā)現(xiàn)了倍數(shù)關系、分數(shù)關系、比的關系之間,可以互相轉化.
二、復習探討.
(一)教學例6.
少先隊員在山坡上栽種松樹和柏樹,一共栽種了120棵,松樹的棵數(shù)是柏樹的4倍.松樹和柏樹各栽多少棵?
1.學生讀題,分析已知條件和問題.
2.分組討論:
。1)題目中的數(shù)量關系是什么?
。2)松樹的棵樹是柏樹的`4倍,可以轉化成哪幾種關系?
(3)本題有幾種解法?
3.學生匯報反饋.
。1)因為:松樹的棵數(shù)+柏樹的棵數(shù)=120棵
所以:我們可以根據(jù)這個等式列方程解應用題.
解:設柏樹種了 棵.
120-24=96(棵)
解:設松樹種了 棵.
120-96=24(棵)
答:柏樹種了24棵,松樹種了96棵.
。2)因為松樹的棵樹是柏樹的4倍,所以松樹和柏樹棵樹的比是4∶1.
所以根據(jù)轉化的比的關系,可以用按比分配的知識來解答.
4+1=5
120 =96(棵)
120 =24(棵)
答:柏樹種了24棵,松樹種了96棵.
。3)因為松樹的棵樹是柏樹的4倍,所以松樹和柏樹棵樹的和是柏樹棵樹的5倍,我根據(jù)倍數(shù)的數(shù)量關系可以運用算術方法解題.
120(4+1)=24(棵)
120-24=96(棵)
答:柏樹種了24棵,松樹種了96棵.
。4)因為松樹的棵樹是柏樹的4倍,所以柏樹的棵數(shù)就是松樹棵樹的 ,如果把松樹的棵數(shù)看作單位1,那么,120棵對應的率就是1+ ,根據(jù)倍數(shù)的數(shù)量關系可以運用算術方法解題.
120(1+ )=96(棵)
120-24=96(棵)
答:柏樹種了24棵,松樹種了96棵.
。5)因為松樹的棵樹是柏樹的4倍,所以松樹和柏樹棵樹的比是4∶1,松樹和松樹、柏樹棵樹和的比是1∶5,所以根據(jù)轉化的比的關系,我可以用比例的知識來解答.
解:設柏樹有 棵.
∶120=1∶5
5 =120
。24
120-24=96(棵)
答:柏樹種了24棵,松樹種了96棵.
4.請你以小組為單位,討論、交流你最喜歡那種方法.為什么?
5.教師總結:在我們解應用題時,一道應用題的數(shù)量關系,可以轉化成不同解決形式.在解答時,我們選擇我們熟練、簡便的方法進行解答.
【小學數(shù)學教案】相關文章:
【精選】小學數(shù)學教案07-06
小學數(shù)學教案(精選)07-06
小學數(shù)學教案07-06
小學數(shù)學教案07-06
小學數(shù)學教案07-06
小學數(shù)學教案07-07
(精選)小學數(shù)學教案07-06
小學數(shù)學教案07-06