初中七年級數(shù)學教案(推薦)
作為一無名無私奉獻的教育工作者,往往需要進行教案編寫工作,教案有利于教學水平的提高,有助于教研活動的開展。那要怎么寫好教案呢?下面是小編收集整理的初中七年級數(shù)學教案,希望對大家有所幫助。
教學目標
使學生進一步理解立方根的概念,并能熟練地進行求一個數(shù)的立方根的運算;
能用有理數(shù)估計一個無理數(shù)的大致范圍,使學生形成估算的意識,培養(yǎng)學生的估算能力;
經(jīng)歷運用計算器探求數(shù)學規(guī)律的過程,發(fā)展合情推理能力。
教學難點
用有理數(shù)估計一個無理的大致范圍。
知識重點
用有理數(shù)估計一個無理的大致范圍。
對于計算器的使用,在教學中采用學生自己閱讀計算器的說明書、自己操作練習來掌握用計算器進行開立方運算的方法,并讓學生互相交流,讓學生親身體會到利用計算器不僅能給運算帶來很大的方便,也給探求數(shù)量間的關系與變化帶來方便。在教學過程中,教師要關注學生能否通過閱讀,掌握用計算器進行開立方運算的簡單操作;能否利用計算器探究數(shù)量間的關系,從而尋找出數(shù)量的變化關系。
使用計算器進行復雜運算,可以使學生學習的重點更好地集中到理解數(shù)學的本質上來,而估算也是一種具有實際應用價值的運算能力,在本節(jié)課的課堂教學中綜合運用筆算、計算器和估算等培養(yǎng)學生的運算能力。知識點一:多邊形的概念
、哦噙呅味x:在平面內(nèi),由一些線段首位順次相接組成的圖形叫做________、
如果一個多邊形由n條線段組成,那么這個多邊形叫做____________。(一個多邊形由幾條線段組成,就叫做幾邊形、)
多邊形的表示:用表示它的各頂點的大寫字母來表示,表示多邊形必須按順序書寫,可按順時針或逆時針的順序。如五邊形ABCDE。
、贫噙呅蔚倪、頂點、內(nèi)角和外角、
多邊形相鄰兩邊組成的角叫做______________,多邊形的邊與它的鄰邊的延長線組成的角叫做________________、
、嵌噙呅蔚膶蔷
連接多邊形的不相鄰的兩個頂點的線段,叫做___________________、畫一個五邊形ABCDE,并畫出所有的對角線。知識點二:凸多邊形與凹多邊形在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個圖形都在這條直線的______,這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因為我們畫CD所在直線,整個多邊形不都在這條直線的同一側,我們稱它為凹多邊形,今后我們在習題、練習中提到的多邊形都是______多邊形、
知識點二:正多邊形
各個角都相等,各條邊都相等的多邊形叫做_____________、
探究多邊形的對角線條數(shù)
知識點三:多邊形的內(nèi)角和公式推導
1、我們知道三角形的內(nèi)角和為__________、
2、我們還知道,正方形的四個角都等于____°,那么它的內(nèi)角和為_____°,同樣長方形的內(nèi)角和也是______°、
3、正方形和長方形都是特殊的四邊形,其內(nèi)角和為360度,那么一般的四邊形的內(nèi)角和為多少呢?
4、畫一個任意的四邊形,用量角器量出它的四個內(nèi)角,計算它們的和,與同伴交流你的結果、從中你得到什么結論?
探究1:任意畫一個四邊形,量出它的4個內(nèi)角,計算它們的和、再畫幾個四邊形,?量一量、算一算、你能得出什么結論?能否利用三角形內(nèi)角和等于180?°得出這個結論?結論:。
探究2:從上面的問題,你能想出五邊形和六邊形的內(nèi)角和各是多少嗎?觀察圖3,?請?zhí)羁眨?/p>
。1)從五邊形的一個頂點出發(fā),可以引_____條對角線,它們將五邊形分為_____個三角形,五邊形的內(nèi)角和等于180°×______、
。2)從六邊形的一個頂點出發(fā),可以引_____條對角線,它們將六邊形分為_____個三角形,六邊形的內(nèi)角和等于180°×______、探究3:一般地,怎樣求n邊形的內(nèi)角和呢?請?zhí)羁眨?/p>
從n邊形的一個頂點出發(fā),可以引____條對角線,它們將n邊形分為____個三角形,n邊形的內(nèi)角和等于180°×______、
綜上所述,你能得到多邊形內(nèi)角和公式嗎?設多邊形的邊數(shù)為n,則
n邊形的內(nèi)角和等于______________、
想一想:要得到多邊形的內(nèi)角和必需通過“___________定理”來完成,就是把一個多邊形分成幾個三角形、除利用對角線把多邊形分成幾個三角形外,還有其他的分法嗎?你會用新的分法得到n邊形的內(nèi)角和公式嗎?
知識點四:多邊形的外角和
探究4:如圖8,在六邊形的每個頂點處各取一個外角,?這些外角的和叫做六邊形的外角和、六邊形的外角和等于多少?
問題:如果將六邊形換為n邊形(n是大于等于3的整數(shù)),結果還相同嗎?多邊形的外角和定理:。理解與運用
例1如果一個四邊形的一組對角互補,那么另一組對角有什么關系?已知:四邊形ABCD的∠A+∠C=180°、求:∠B與∠D的關系、
自我檢測:
。ㄒ唬⑴袛囝}、
1、當多邊形邊數(shù)增加時,它的內(nèi)角和也隨著增加、()
2、當多邊形邊數(shù)增加時、它的外角和也隨著增加、()
3、三角形的外角和與一多邊形的外角和相等、()
4、從n邊形一個頂點出發(fā),可以引出(n一2)條對角線,得到(n一2)個三角形、()
5、四邊形的四個內(nèi)角至少有一個角不小于直角、()
(二)、填空題、
1、一個多邊形的每一個外角都等于30°,則這個多邊形為
2、一個多邊形的每個內(nèi)角都等于135°,則這個多邊形為
3、內(nèi)角和等于外角和的多邊形是邊形、
4、內(nèi)角和為1440°的多邊形是
5、若多邊形內(nèi)角和等于外角和的3倍,則這個多邊形是邊形、
6、五邊形的對角線有
7、一個多邊形的內(nèi)角和為4320°,則它的邊數(shù)為
8、多邊形每個內(nèi)角都相等,內(nèi)角和為720°,則它的每一個外角為
9、四邊形的∠A、∠B、∠C、∠D的外角之比為1:2:3:4,那么∠A:∠B:∠C:∠、
10、四邊形的四個內(nèi)角中,直角最多有個,鈍角最多有銳角最
。ㄈ┙獯痤}
1、一個八邊形每一個頂點可以引幾條對角線?它共有多少條對角線?n邊形呢?
2、在每個內(nèi)角都相等的多邊形中,若一個外角是它相鄰內(nèi)角的則這個多邊形是幾邊形?
3、若一個多邊形的內(nèi)角和與外角和的比為7:2,求這個多邊形的邊數(shù)。
4、一個多邊形的每一個內(nèi)角都等于其相等外角的
5、一個多邊形少一個內(nèi)角的度數(shù)和為2300°、
。1)求它的邊數(shù);
。2)求少的那個內(nèi)角的度數(shù)、
【初中七年級數(shù)學教案】相關文章:
初中七年級的數(shù)學教案02-02
七年級初中數(shù)學教案12-02
初中七年級數(shù)學教案12-30
初中七年級數(shù)學教案01-17
初中七年級下冊數(shù)學教案01-13
初中七年級數(shù)學教案范文01-13
七年級初中數(shù)學教案(6篇)12-04
七年級初中數(shù)學教案6篇12-03
初中七年級數(shù)學教案5篇02-27
初中七年級數(shù)學教案(5篇)03-02