單項式的乘法
教學建議
一、知識結構
二、重點、難點分析
本節(jié)的重點是:單項式乘法法則的導出.這是因為單項式乘法法則的導出是對學生已有的數學知識的綜合運用,滲透了“將未知轉化為已知”的數學思想,蘊含著“從特殊到一般”的認識規(guī)律,是培養(yǎng)學生思維能力的重要內容之一.
本節(jié)的難點是:多種運算法則的綜合運用.是因為單項式的乘法最終將轉化為有理數乘法、同底數冪相乘、冪的乘方、積的乘方等運算,對于初學者來說,由于難于正確辯論和區(qū)別各種不同的運算以及運算所使用的法則,易于將各種法則混淆,造成運算結果的錯誤.
三、教法建議
本節(jié)課在教學過程 中的不同階段可以采用了不同的教學方法,以適應教學的需要.
(1)在新課學習階段的單項式的乘法法則的推導過程中,可采用引導發(fā)現(xiàn)法.通過教師精心設計的問題鏈,引導學生將需要解決的問題轉化成用已經學過的知識可以解決的問題,充分體現(xiàn)了教師的主導作用和學生的主體作用,學生始終處在觀察思考之中.
(2)在新課學習的例題講解階段,可采用講練結合法.對于例題的學習,應圍繞問題進行,教師引導學生通過觀察、思考,尋求解決問題的方法,在解題的過程中展開思維.與此同時還進行多次有較強針對性的練習,分散難點.對學生分層進行訓練,化解難點.并注意及時矯正,使學生在前面出現(xiàn)的錯誤,不致于影響后面的學習,為后而后學習掃清障礙.通過例題的講解,教師給出了解題規(guī)范,并注意對學生良好學習習慣的培養(yǎng).
(3)本節(jié)課可以師生共同小結,旨在訓練學生歸納的方法,并形成相應的知識系統(tǒng),進一步防范學生在運算中容易出現(xiàn)的錯誤.
教學設計示例
一、教學目的
1.使學生理解并掌握單項式的乘法法則,能夠熟練地進行單項式的乘法計算.
2.注意培養(yǎng)學生歸納、概括能力,以及運算能力.
3.通過單項式的乘法法則在生活中的應用培養(yǎng)學生的應用意識.
二、重點、難點
重點:掌握單項式與單項式相乘的法則.
難點:分清單項式與單項式相乘中,冪的運算法則.
三、教學過程
復習提問:
什么是單項式?什么叫單項式的系數?什么叫單項式的次數?
引言 我們已經學習了冪的運算性質,在這個基礎上我們可以學習整式的乘法運算.先來學最簡單的整式乘法,即單項式之間的乘法運算(給出標題).
新課 看下面的例子:計算
(1)2x2y·3xy2; (2)4a2x2·(-3a3bx).
同學們按以下提問,回答問題:
(1)2x2y·3xy2
①每個單項式是由幾個因式構成的,這些因式都是什么?
2x2y·3xy2=(2·x2·y)·(3·x·y2)
②根據乘法結合律重新組合
2x2y·3xy2=2·x2·y·3·x·y2
③根據乘法交換律變更因式的位置
2x2y·3xy2=2·3·x2·x·y·y2
④根據乘法結合律重新組合
2x2y·3xy2=(2·3)·(x2·x)·(y·y2)
⑤根據有理數乘法和同底數冪的乘法法則得出結論
2x2y·3xy2=6x3y3
按以上的分析,寫出(2)的計算步驟:
(2)4a2x2·(-3a3bx)
=4a2x2·(-3)a3bx
=[4·(-3)]·(a2·a3)·(x2·x)·b
=(-12)·a5·x3·b
=-12a5bx3.
通過以上兩題,讓學生總結回答,歸納出單項式乘單項式的運算步驟是:
①系數相乘為積的系數;
②相同字母因式,利用同底數冪的乘法相乘,作為積的因式;
③只在一個單項式里含有的字母,連同它的指數也作為積的一個因式;
④單項式與單項式相乘,積仍是一個單項式;
⑤單項式乘法法則,對于三個以上的單項式相乘也適用.
看教材,讓學生仔細閱讀單項式與單項式相乘的法則,邊讀邊體會邊記憶.
利用法則計算以下各題.
例1 計算以下各題:
(1)4n2·5n3;
(2)(-5a2b3)·(-3a);
(3)(-5an+1b)·(-2a);
(4)(4×105)·(5×106)·(3×104).
解:(1) 4n2·5n3
=(4·5)·(n2·n3)
=20n5;
(2) (-5a2b3)·(-3a)
=[(-5)·(-3)]·(a2·a)·b3
=15a3b3;
(3) (-5an+1b)·(-2a)
=[(-5)·(-2)]·(an+1·a)b
=10an+2b;
(4) (4·105)·(5·106)·(3·104)
=(4·5·3)·(105·106·104)
=60·1015
=6·1016.
例2 計算以下各題(讓學生回答):
(3)(-5amb)·(-2b2);
(4)(-3ab)(-a2c)·6ab2.
=3x3y3;
(3) (-5amb)·(-2b2);
=[(-5)·(-2)]·am·(b·b2)
=10amb3
(4)(-3ab)·(-a2c)·6ab2
=[(-3)·(-1)·6]·(aa2a)·(bb2)·c
=18a4b3c.
小結 單項式與單項式相乘是整式乘法中的重要內容,它的運算法則的導出主要依據是,乘法的交換律與結合律以及冪的運算性質.
單項式的乘法