- 相關(guān)推薦
數(shù)學(xué)教案-完全平方公式
課題:完全平方公式
一、教材分析:
(一)教材的地位與作用
本節(jié)內(nèi)容主要研究的是完全平方公式的推導(dǎo)和公式在整式乘法中的應(yīng)用。它是在學(xué)生學(xué)習(xí)了代數(shù)式的概念、整式的加減法、冪的運算和整式的乘法后進行學(xué)習(xí)的,其地位和作用主要體現(xiàn)在以下幾方面:
(1)整式是初中代數(shù)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運算又是整式中一大主干,乘法公式則是在學(xué)習(xí)了單項式乘法、多項式乘法之后來進行學(xué)習(xí)的;一方面是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié);另一方面,乘法公式的推導(dǎo)是初中代數(shù)中運用推理方法進行代數(shù)式恒等變形的開端,通過乘法公式的學(xué)習(xí)對簡化某些整式的運算、培養(yǎng)學(xué)生的求簡意識有較大好處。
(2)乘法公式是后續(xù)學(xué)習(xí)的必備基礎(chǔ),不僅對學(xué)生提高運算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)因式分解、分式運算的重要基礎(chǔ),同時也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的功能。
(3)公式的發(fā)現(xiàn)與驗證給學(xué)生體驗規(guī)律發(fā)現(xiàn)的基本方法和基本過程提供了很好模式。
(二)教學(xué)目標(biāo) 的確定
在素質(zhì)背景下的數(shù)學(xué)教學(xué)應(yīng)以學(xué)生的發(fā)展為本,學(xué)生的能力培養(yǎng)為重,尤其是創(chuàng)新、創(chuàng)造能力,以及培養(yǎng)學(xué)生良好的個性品質(zhì)等。根據(jù)以上指導(dǎo)思想,同時參照義務(wù)教育階段《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,確定本節(jié)課的教學(xué)目標(biāo) 如下:
1、知識目標(biāo):
理解公式的推導(dǎo)過程,了解公式的幾何背景,會應(yīng)用公式進行簡單的計算。
2、能力目標(biāo):
滲透建模、化歸、換元、數(shù)形結(jié)合等思想方法,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡意識、應(yīng)用意識、解決問題的能力和創(chuàng)新能力。
3、情感目標(biāo):
培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思維品質(zhì)。
(三)教學(xué)重點與難點
完全平方公式和平方差公式一樣是主要的乘法公式,其本質(zhì)是多項式乘法,是學(xué)生今后用于計算的一種重要依據(jù),因此,本節(jié)教學(xué)的重點與難點如下:
本節(jié)的重點是體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),并會運用公式進行簡單的計算。
本節(jié)的難點是從廣泛意義上理解公式中的字母含義,判明要計算的代數(shù)式是哪兩數(shù)的和(差)的平方。
二、教學(xué)方法與手段
(一)教學(xué)方法:
針對初一學(xué)生的形象思維大于抽象思維,注意力不能持久等年齡特點,及本節(jié)課實際,采用自主探索,啟發(fā)引導(dǎo),合作交流展開教學(xué),引導(dǎo)學(xué)生主動地進行觀察、猜測、驗證和交流。同時考慮到學(xué)生的認知方式、思維水平和學(xué)習(xí)能力的差異進行分層次教學(xué),讓不同層次的學(xué)生都能主動參與并都能得到充分的發(fā)展。邊啟發(fā),邊探索邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)活動和因材施教原則,教師努力為學(xué)生的探索性學(xué)習(xí)創(chuàng)造知識環(huán)境和氛圍,遵循知識產(chǎn)生過程,從特殊→一般→特殊,將所學(xué)的知識用于實踐中。
采用小組討論,大組競賽等多種形式激發(fā)學(xué)習(xí)興趣。
(二)教學(xué)手段:
利用投影儀輔助教學(xué),突破教學(xué)難點 ,公式的推導(dǎo)變成生動、形象、直觀,提高教學(xué)效率。
(三)學(xué)法指導(dǎo):
在學(xué)法上,教師應(yīng)引導(dǎo)學(xué)生積極思維,鼓勵學(xué)生進行合作學(xué)習(xí),讓每個學(xué)生都動口、動手、動腦,自己歸納出運算法則,培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。
三、教材處理
根據(jù)本節(jié)內(nèi)容特點,本著循序漸進的原則,我將以“邊長為(a+b)的正方形面積是多少?”這個實際問題引入新課,關(guān)于兩數(shù)和的平方公式通過實例、推導(dǎo)、驗證幾個步驟完成。關(guān)于兩數(shù)差的平方公式,我將為學(xué)生提供三種不同的思路,由學(xué)生自己選擇學(xué)習(xí)、理解,然后再歸納的方法進行,再通過分層次練習(xí),加以鞏固。
四、教學(xué)程序
教 學(xué) 過 程
設(shè)計意圖
一、 創(chuàng)設(shè)情境,引出課題
如圖,有一個邊長為a米的正方形廣場,則這個廣場的面積是多少?
a
若在這個廣場的相鄰兩邊鋪一條寬為10米的道路,則面積是多少?
a 10
引導(dǎo)學(xué)生利用圖形分割求面積。
另一方面:正方形
10 10a 102 面積為(a+10)2, 所以:
(a+10)2=a2+20a+102
a a2 10a
a 10
b ab b2 把10替換為b,
(a+b)2=a2+2ab+b2
a a2 ab 提出課題
a b
通過較為簡單的幾何圖形面積計算和較熟悉的整式乖法計算。引入本節(jié)學(xué)習(xí)內(nèi)容(a+b)·(a+b)
(根據(jù)初一學(xué)生年齡特點,采用圖形變化來激發(fā)學(xué)生學(xué)習(xí)興趣)
問題是知識、能力的生長點,通過富有實際意義的問題能激活學(xué)生原有認知,促使學(xué)生主動地進行探索和思考。
對公式(a+b)2=a2+2ab+b2的形式進行初步認識,接觸
教 學(xué) 過 程
設(shè)計意圖
二、交流對話,探求新知
1、推導(dǎo)兩數(shù)和的完全平方公式
計算(a+b)2
解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
2、理解公式特征
①算式:兩數(shù)和的平方
②積:兩個數(shù)的平方和加上這兩個數(shù)積的2倍
3、語言敘述
(a+b)2=a2+2ab+b2用語言如何敘述
4、公式(a-b)2=a2-2ab+b2教學(xué)
①利用多項式乘法 (a-b)2=(a-b)(a-b)
②利用換元思想 (a-b)2=[a+(-b)]2
③利用圖形
b
a
(a-b) b
a
5、學(xué)生總結(jié)、歸納:
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
這兩個公式叫做完全平方公式,兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和,加上(或減去)這兩數(shù)積的2倍。
6、公式中的字母含義的理解。(學(xué)生回答)
(x+2y)2是哪兩個數(shù)的和的平方?
(x+2y)2=( )2+2( )( )+( )2
(2x-5y)2是哪兩個數(shù)的差的平方?
(2x+5y)2=( )2+2( )( )+( )2
變式 (2x-5y)2可以看成是哪兩個數(shù)的和的平方?
利用多項式乘法推導(dǎo)公式,使學(xué)生了解公式的來源以及理解乘法公式的本質(zhì)。
組織學(xué)生小組討論,使學(xué)生明確公式特征,加深對公式表象的理解。
由學(xué)生對公式
(a+b)2=a2+2ab+b2進行口頭語言敘述。
(1)說明:教師提供三種模式,由學(xué)生選擇一種去解決。培養(yǎng)學(xué)生學(xué)習(xí)的主動性,開闊學(xué)生的思路。(2)同時對滲透數(shù)形結(jié)合思想、換元思想,也是分散、分步突破本節(jié)的難點的第一個層次;(3)體會辯證統(tǒng)一的唯物主義觀點;(4)正確引導(dǎo)學(xué)生學(xué)習(xí)時知識的正遷移。
使學(xué)生學(xué)會對公式的正確表述,有利于學(xué)生正確用于計算之中,此時也可以讓學(xué)生對兩個公式特點進行討論歸納,適當(dāng)總結(jié)一定的口訣:“頭平方,尾平方,兩倍的乘積中間放!
加深學(xué)生對公式中的字母含義的理解,明確字母意義的廣泛性
教 學(xué) 過 程
設(shè)計意圖
三、整理新知形成結(jié)構(gòu)
1、完全平方公式并分析公式左右的特征。
2、換元的基本想法
四、應(yīng)用新知,體驗成功
1、例1教學(xué):用完全平方公式計算
(1)(a+3)2 (2)(y-
【數(shù)學(xué)教案-完全平方公式】相關(guān)文章:
數(shù)學(xué)教案完全平方公式12-30
完全平方公式 習(xí)題04-28
《完全平方公式》教案06-03
完全平方公式教案04-25
完全平方公式教案設(shè)計01-24
完全平方公式教案設(shè)計04-27
完全平方公式分解因式的教案設(shè)計04-30
完全平方公式分解因式教案設(shè)計04-27