- 相關(guān)推薦
數(shù)學(xué)教案:等腰三角形的判定(精選12篇)
作為一名無私奉獻(xiàn)的老師,通常需要用到教案來輔助教學(xué),借助教案可以更好地組織教學(xué)活動?靵韰⒖冀贪甘窃趺磳懙陌!下面是小編收集整理的數(shù)學(xué)教案:等腰三角形的判定,供大家參考借鑒,希望可以幫助到有需要的朋友。
數(shù)學(xué)教案:等腰三角形的判定 1
一、教材分析
本節(jié)課是在學(xué)習(xí)了軸對稱圖形以及全等三角形的判定的基礎(chǔ)上進(jìn)行的,主要學(xué)習(xí)等腰三角形的“等邊對等角”和“等腰三角形的三線合一”兩個性質(zhì)。本節(jié)內(nèi)容是對前面知識的深化和應(yīng)用,它的性質(zhì)定理不僅是證明角相等、線段相等及兩直線互相垂直的依據(jù),而且也是后繼學(xué)習(xí)線段垂直平分線、等腰梯形的預(yù)備知識。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
二、教學(xué)目的
。ㄒ唬┲R目標(biāo):知道等腰三角形的定義及相關(guān)概念,理解等腰三角形的性質(zhì),會利用等腰三角形的性質(zhì)進(jìn)行簡單的推理、判斷和計算。
。ǘ┠芰δ繕(biāo):通過實踐,觀察,證明等腰三角形性質(zhì),發(fā)展學(xué)生合情推理和演繹推理能力,通過運用等腰三角形的性質(zhì)解決有關(guān)問題,提高分析問題、解決問題能力。
。ㄈ┣楦心繕(biāo):在實際操作動手中激發(fā)學(xué)生的學(xué)習(xí)興趣,體驗幾何發(fā)現(xiàn)的樂趣,從而增強學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的.意識。
三、教學(xué)重、難點
。ㄒ唬┲攸c:等腰三角形的性質(zhì)的探究及應(yīng)用
。ǘ╇y點:等腰三角形“三線合一”性質(zhì)的運用
四、教學(xué)方法
(一)教法:本節(jié)課采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。
。ǘ⿲W(xué)法:本節(jié)課主要引導(dǎo)學(xué)生從已知的、熟悉的知識入手,讓學(xué)生自己在某一種環(huán)境下不知不覺中運用舊知識的鑰匙去打開新知識的大門,進(jìn)入新知識的領(lǐng)域,從不同角度去分析、解決新問題,發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
五、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情景,引入新知
我們學(xué)過三角形,你都知道哪些特殊的三角形?今天我們來學(xué)習(xí)其中的一種特殊的三角形——等腰三角形。
等腰三角形的有關(guān)概念,軸對稱圖形的有關(guān)概念。
提問:等腰三角形是不是軸對稱圖形?什么是它的對稱軸?
。ǘ⿲嶒炋剿,大膽猜想
教師演示(模型)等腰三角形是軸對稱圖形的實驗,并讓學(xué)生做同樣的實驗,引導(dǎo)學(xué)生觀察重合部分,發(fā)現(xiàn)等腰三角形的一些性質(zhì)。
。ㄈ┳C明猜想,形成定理
讓學(xué)生由實驗或演示指出各自的發(fā)現(xiàn),并加以引導(dǎo),用規(guī)范的數(shù)學(xué)語言進(jìn)行逐條歸納,最后得出等腰三角形的性質(zhì)定理1、2。
1、性質(zhì)定理1:
等腰三角形的兩個底角相等
在△ABC中,∵AB=AC()∴∠B=∠C()
2、性質(zhì)定理2:
等腰三角形的頂角平分線、底邊上的中線和高線互相重合
(1)∵AB=AC∠1=∠2()∴BD=DCAD⊥BC()
。2)∵AB=ACBD=DC() ∴∠1=∠2AD⊥BC()
。3)∵AB=ACAD⊥BC于D()∴BD=DC∠1=∠2()
。ㄋ模⿷(yīng)用舉例,強化訓(xùn)練
指導(dǎo)學(xué)生表述證明過程。
思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?
。ㄎ澹w納小結(jié),布置作業(yè)
1、歸納:
。1)等腰三角形的性質(zhì)定理。
。2)等邊三角形的性質(zhì)
(3)利用等腰三角形的性質(zhì)定理可證明:兩角相等,兩線段相等,兩直線互相垂直。
。4)聯(lián)想方法要經(jīng)常運用,對解題大有裨益。
2、作業(yè)布置:
。1)必做題:
書本課后作業(yè)
(2)選做題:搜集日常生活中應(yīng)用等腰三角形的實例,并思考這些實例運用了等腰三角形的哪些性質(zhì)?
數(shù)學(xué)教案:等腰三角形的判定 2
一、教材分析
1、教材的地位和作用
《等腰三角形的性質(zhì)》是“華東師大版八年級數(shù)學(xué)(上)”第十三章第三節(jié)第一課時的內(nèi)容。本節(jié)先課利用軸對稱的知識來探索發(fā)現(xiàn)等腰三角形的有關(guān)性質(zhì),然后利用全等三角形的知識證明這些性質(zhì)。學(xué)習(xí)過程中運用的“操作——觀察——發(fā)現(xiàn)——猜想——論證——應(yīng)用”的方法是探究數(shù)學(xué)知識的常用方法。同時“等邊對等角”和“三線合一”的性質(zhì)是又是接下來學(xué)習(xí)等邊三角形知識以及等腰三角形的判定的基礎(chǔ)知識,更是今后論證兩個角相等、兩條線段相等、兩條線垂直的重要依據(jù)。起著承前啟后的作用。
2、教材的教學(xué)目標(biāo):
、僦R與技能目標(biāo):
掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì),能運用它們解決等腰三角形的邊、角計算問題。
②過程與方法目標(biāo):
通過實踐、觀察、同組間學(xué)生以及小組與小組間的合作與交流,培養(yǎng)學(xué)生多角度思考問題和分析問題、解決問題的能力。③情感與態(tài)度目標(biāo):
通過合作交流培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作、樂于助人的品質(zhì)。
3、教學(xué)重點與難點:
重點:等腰三角形“等邊對等角”和“三線合一”性質(zhì)的探究和應(yīng)用。難點:等腰三角形性質(zhì)的推理證明。
二、學(xué)情分析
八年級上期學(xué)生學(xué)習(xí)幾何知識有了初步的抽象思維感知,有一定的形象直觀思維能力,能進(jìn)行簡單的推理論證。但其運用數(shù)學(xué)思維的廣闊性、緊密性、靈活性比較欠缺,在學(xué)習(xí)過程中要加強引導(dǎo)和培養(yǎng)。
三、教法與手段
根據(jù)本課內(nèi)容特點和初二學(xué)生思維活動的特點,在教學(xué)中我將采用“操作——觀察——發(fā)現(xiàn)——猜想——論證——應(yīng)用”的教學(xué)法,利用分組活動,組間合作與交流從而達(dá)到對“等邊對等角”和“三線合一”的性質(zhì)的探究的層層深入。另外,我還將采用多媒體輔助教學(xué),呈現(xiàn)更直觀的形象,激發(fā)學(xué)生的積極性、主動性,增大課堂容量,提高教學(xué)效率。
四、學(xué)法設(shè)計
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)的抽象結(jié)論,應(yīng)以觀察、實驗為前提,幾何教學(xué)應(yīng)該把實驗方法與邏輯分析結(jié)合起來。結(jié)合這一理念在探究等腰三角形的性質(zhì)時我將采用學(xué)生實驗操作、小組合作、觀察發(fā)現(xiàn)、師生互動、學(xué)生互動的學(xué)習(xí)方式。
五、教學(xué)過程設(shè)計
(一)創(chuàng)設(shè)情景、導(dǎo)入新課
、購(fù)習(xí)提問:向同學(xué)們出示幾張精美的建筑物圖片,引入等腰三角形。
。ㄔO(shè)計意圖:感知數(shù)學(xué)知識和實際生活聯(lián)系緊密,培養(yǎng)觀察力,感受身邊處處有數(shù)學(xué)。)
、诘妊切蔚南嚓P(guān)概念:
1定義:兩條邊相等的三角形叫做等腰三角形。
邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊。
角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。
、墼O(shè)問:等腰三角形具有哪些特殊的性質(zhì)呢?(引入新課)
。ǘ⿲嶒炋剿、得出猜想:
、賱觿邮郑鹤屚瑢W(xué)們用剪刀在長方形紙片上剪下等腰三角形,每個人的等腰三角形的大小
和形狀可以不一樣,把紙片對折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?“比一比”看誰思考的結(jié)論最多。
。ㄔO(shè)計意圖:以六人小組為單位學(xué)生親自操作實驗,填寫導(dǎo)學(xué)案。通過組內(nèi)合作與交流,集
思廣益讓學(xué)生用自己的語言在小組內(nèi)表達(dá)自己的發(fā)現(xiàn)。)
、诘贸霾孪耄嚎勺寣W(xué)生有充分的時間觀察、思考、交流、可能得到的結(jié)論:
(1)等腰三角形是軸對稱圖形
(2)∠B=∠C
(3)BD=CD,AD為底邊上的中線
(4)∠ADB=∠ADC=90°,AD為底邊上的高線(5)∠BAD=∠CAD,AD為頂角平分線
。ㄔO(shè)計意圖:以小組為單位派代表發(fā)言即組間交流補充,引導(dǎo)歸納提煉,使不同層次的學(xué)生都能感受新知,建立新的知識體系,為進(jìn)一步探索做準(zhǔn)備。)
。ㄈ┳C明猜想、形成定理:
1、結(jié)論(2)∠B=∠C你能用一個命題表達(dá)這一結(jié)論并論證它的正確性嗎?
。1)語言總結(jié):等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
。2)怎樣論證這個一命題的正確性呢?
、贋樽C∠B=∠C,需要添加輔助線構(gòu)造以∠B、∠C為元素的兩個全等三角形。
、谔接懱砑虞o助線的方法,讓學(xué)生選擇一種輔助線并完成證明過程。
設(shè)計說明:以上過程分小組討論,在探索過程中鼓勵學(xué)生尋求不同(作高、中線、角平分線)的方法來解決問題。
利用展臺展示各小組不同的證明方法,讓學(xué)生的個性得到充分的展示。
。3)得出等腰三角形的性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
2、結(jié)論(3)(4)(5)你也能用一個命題表達(dá)這一結(jié)論并論證它的.正確性嗎?
。1)結(jié)合性質(zhì)一的證明鼓勵學(xué)生證明總結(jié)的命題
。2)得出等腰三角形的性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
。3)“三線合一”的幾何表達(dá):
如圖,在△ABC中,AB=AC,點D在BC上
、伲1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD
、冢2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC(為了方便記憶可以說成“知一求二!”)
、郏3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD
2設(shè)計意圖:充分調(diào)動各組學(xué)生的積極性、主動性,采用各小組競爭的方式,參照性質(zhì)1的探索完成本性質(zhì)的探索與證明。通過本性質(zhì)的探索讓不同的學(xué)生有不同的收獲,讓每個學(xué)生的能力都得到提升。
(四)實例剖析、鞏固新知:
1、例1:已知:在△ABC中,AB=AC,∠B=80°,求∠C和∠A的度數(shù)
2、例2:在△ABC中,AB=AC,點D是BC的中點,∠B=30
。1)求∠ADC的度數(shù)(2)求∠BAD的度數(shù)
此題的目的在于等腰三角形“等邊對等角”和“三線合一”性質(zhì)的綜合運用,以及怎么書寫解答題,強調(diào)“三線合一”的表達(dá)過程。
解:(1)∵AB=AC,D是BC邊上的中點(已知)
∴AD⊥BC,∠BAD=∠CAD(等腰三角形的“三線合一”)∴∠ADC=∠ADB=90°(垂直的定義)
(2)∵∠BAD+∠B+∠ADB=180°(三角形內(nèi)角和等于180°)∴∠BAD=180°-∠B-∠ADB
=180°-30°-90°=60°
。ㄔO(shè)計意圖:設(shè)計例題1鞏固等腰三角形“等邊對等角的性質(zhì)”的理解,讓學(xué)生學(xué)以致用,獲得成就感,增強學(xué)習(xí)數(shù)學(xué)的自信心。而例題2主要是體會等腰三角形“三線合一”性質(zhì)的運用。這兩個例題作為課本上的例題是基礎(chǔ)新知的鞏固,要求能正確的寫出解題過程。)(五)、課堂練習(xí)、總結(jié)所得:
1、先完成課后81頁練習(xí)1、2、3、4題
(設(shè)計意圖:作為課本上的練習(xí)題的完成達(dá)到檢測學(xué)生對本節(jié)課知識的掌握情況,從而幫助學(xué)生查漏補缺,鞏固基礎(chǔ)知識。)
2、學(xué)以致用:
。ㄔO(shè)計意圖:讓書生體會數(shù)學(xué)知識和實際生活的緊密聯(lián)系)
如圖,是西安半坡博物館屋頂?shù)慕孛鎴D,已經(jīng)知道它的兩邊AB和AC是相等的.建筑工人師傅對這個建筑物做出了兩個判斷:
、俟と藥煾翟跍y量了∠B為37°以后,并沒有測量∠C,就說∠C的度數(shù)也是37°。②工人師傅要加固屋頂,他們通過測量找到了橫梁BC的中點D,然后在AD兩點之間釘上一根木樁,他們認(rèn)為木樁是垂直橫梁的。
請同學(xué)們想想,工人師傅的說法對嗎?請說明理由。
設(shè)計意圖:運用所學(xué)知識解決實際問題,引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,進(jìn)一步加深學(xué)生對等腰三角形性質(zhì)的理解和運用;從數(shù)學(xué)回到實際生活,自然地滲透數(shù)學(xué)作用于實際問題的思想。
3、課堂小結(jié)
今天我們學(xué)習(xí)了什么?你覺得在等腰三角形的學(xué)習(xí)中要注意哪些問題?設(shè)計意圖:幫助學(xué)生回顧,歸納,鞏固所學(xué)知識。A(六)作業(yè)布置、深化提高:
1、課本P84:習(xí)題13.31、2、3;(必做題)
2、(思維發(fā)散)選做題
已知:如圖△ABC中,AB=AC,CE⊥AEE1于E,CE=BCB2
求證:∠ACE=∠BC
數(shù)學(xué)教案:等腰三角形的判定 3
一、設(shè)計理念
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)是人們對客觀世界定性把握和定量刻畫,逐漸抽象概括,形成方法和理論,并進(jìn)行廣泛應(yīng)用的過程”,“有效的數(shù)學(xué)學(xué)習(xí)活動不能單純地依賴模仿與記憶,動手實踐、自主探究與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式”。因此,在本節(jié)課的教學(xué)設(shè)計中,將始終體現(xiàn)以下教育教學(xué)理念:
1、突出體現(xiàn)數(shù)學(xué)課程的基礎(chǔ)性、普及性和發(fā)展性,使數(shù)學(xué)教育面向全體學(xué)生。
2、學(xué)生是學(xué)習(xí)的“主人”,教學(xué)活動要遵循數(shù)學(xué)學(xué)習(xí)的心理規(guī)律,從已有的生活經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將已有的實際問題抽象成數(shù)學(xué)模型,并解釋和應(yīng)用數(shù)學(xué)知識的過程。
3、教師是學(xué)習(xí)活動的組織者、引導(dǎo)者,教師應(yīng)組織和引導(dǎo)學(xué)生在自主探索、合作交流的過程中理解和掌握數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗。
4、聯(lián)系現(xiàn)實生活進(jìn)行教學(xué),讓學(xué)生初步具有“數(shù)學(xué)知識來源于生活,應(yīng)用于生活”的思想,增強數(shù)學(xué)知識的應(yīng)用意識。
二、教材分析
1、教學(xué)內(nèi)容:
本節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實驗教材數(shù)學(xué)八年級上冊第十四章第三節(jié)《等腰三角形》的第一課時的內(nèi)容——等腰三角形的性質(zhì),等腰三角形是一種特殊的三角形,它除了具有一般三角形的性質(zhì)以外,還具有一些特殊的性質(zhì)。它是軸對稱圖形,具有對稱性,本節(jié)課就是要利用對稱的知識來研究等腰三角形的有關(guān)性質(zhì),并利用全等三角形的知識證明這些性質(zhì)。
2、在教材中的地位與作用:
本節(jié)課是在學(xué)生掌握了一般三角形和軸對稱的知識,具有初步的推理證明能力的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,擔(dān)負(fù)著進(jìn)一步訓(xùn)練學(xué)生學(xué)會分析、學(xué)會證明的任務(wù),在培養(yǎng)學(xué)生的思維能力和推理能力等方面有重要的作用;而“等邊對等角”和“三線合一”的性質(zhì)是今后論證兩個角相等、兩條線段相等、兩條直線垂直的重要依據(jù),本節(jié)課是第三課時研究等邊三角形的基礎(chǔ),是全章的重點之一。
3、教學(xué)目標(biāo):
知識技能:1、理解掌握等腰三角形的性質(zhì)。
2、運用等腰三角形的性質(zhì)進(jìn)行證明和計算。
數(shù)學(xué)思考:1、觀察等腰三角形的對稱性,發(fā)展形象思維。
2、通過實踐、觀察、證明等腰三角形的性質(zhì),發(fā)展學(xué)生合情推理能力和演繹推理能力。
解決問題:1、通過觀察等腰三角形的對稱性,培養(yǎng)學(xué)生觀察、分析、歸納問題的能力。
2、通過運用等腰三角形的性質(zhì)解決有關(guān)的問題,提高運用知識和技能解決問題的能力,發(fā)展應(yīng)用意識。
情感態(tài)度:通過引導(dǎo)學(xué)生對圖形的觀察、發(fā)現(xiàn),激發(fā)學(xué)生的好奇心和求知欲,并在運用數(shù)學(xué)知識解答問題的活動中獲取成功的體驗,建立學(xué)習(xí)的自信心。
4、教學(xué)重點與難點:
重點:等腰三角形的性質(zhì)的探索和應(yīng)用。
難點:等腰三角形的性質(zhì)的驗證。
5、教學(xué)準(zhǔn)備:CAI課件,長方形的紙片,剪刀,常用畫圖工具。
三、學(xué)情分析
八年級學(xué)生的抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進(jìn)行簡單的推理論證,掌握了一般三角形和軸對稱的知識。因此,在本節(jié)課的教學(xué)中,可讓學(xué)生從已有的生活經(jīng)驗出發(fā),參與知識的產(chǎn)生過程,在實踐操作、自主探索、思考討論、合作交流等數(shù)學(xué)活動中,理解和掌握數(shù)學(xué)知識和技能,形成數(shù)學(xué)思想和方法,讓每個學(xué)生在數(shù)學(xué)上得到不同的發(fā)展,人人都獲得必需的數(shù)學(xué)。
四、教法設(shè)想
——讓學(xué)生參與教學(xué)過程,注重培養(yǎng)學(xué)生的建構(gòu)習(xí)慣,提高學(xué)生的數(shù)學(xué)素質(zhì)。
《新課程標(biāo)準(zhǔn)》要求課堂教學(xué)要充分體現(xiàn)以學(xué)生發(fā)展為本的精神,因此,在本節(jié)課的教學(xué)設(shè)計中,我采用了“問題情境——建立模型——解釋、應(yīng)用與拓展”的教學(xué)模式,讓學(xué)生經(jīng)歷知識的形成與應(yīng)用的過程,從而更好地理解數(shù)學(xué)知識的意義,掌握必要的基礎(chǔ)知識和基本技能,發(fā)展應(yīng)用數(shù)學(xué)知識的意識與能力,增強學(xué)好數(shù)學(xué)的愿望和信心。
在教學(xué)中,遵循因材施教的原則,堅持以學(xué)生為主體,靈活運用教具直觀教學(xué)、聯(lián)想發(fā)現(xiàn)教學(xué)、設(shè)疑思考和逐步滲透等教學(xué)方法,充分發(fā)揮學(xué)生的主觀能動性,注重學(xué)生探究能力的培養(yǎng),讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維,加強對學(xué)生的啟發(fā)、引導(dǎo)和鼓勵,培養(yǎng)學(xué)生大膽猜想、小心求證的科學(xué)研究思想,為學(xué)生創(chuàng)設(shè)情境,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣,促使他們不斷克服學(xué)習(xí)中的被動心理,讓學(xué)生在輕松愉快的學(xué)習(xí)中掌握知識、發(fā)展智力、受到教育。
采用多媒體輔助教學(xué),呈現(xiàn)更直觀的形象,激發(fā)學(xué)生的積極性、主動性,增大課堂容量,提高教學(xué)效率。
五、學(xué)法設(shè)計
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)的抽象結(jié)論,應(yīng)以觀察、實驗為前提,幾何教學(xué)應(yīng)該把實驗方法與邏輯分析結(jié)合起來。教學(xué)中,讓學(xué)生在教師的引導(dǎo)下,一邊進(jìn)行折疊重合的模型演示,一邊進(jìn)行閱讀討論,通過看、想、議、練等活動,自己“發(fā)現(xiàn)”等腰三角形的性質(zhì);從而避免了傳統(tǒng)教學(xué)中的灌輸式、注入式。這樣做有利于活躍學(xué)生的思維,幫助他們探本求源,體現(xiàn)了“學(xué)習(xí)任何東西的最好途徑是自己去發(fā)現(xiàn)”和“學(xué)問之道,問而得,不如求而得之深固也”的思想。把重點放在學(xué)生如何學(xué)這一方面,通過直觀演示得到感性認(rèn)識,在實踐、觀察、討論、交流等活動中,讓學(xué)生經(jīng)歷由驗證歸納到推理論證的認(rèn)知過程,掌握知識和技能,形成思想和方法,培養(yǎng)學(xué)生的造性思維。
六、教學(xué)過程設(shè)計
。ㄒ唬┗仡櫯c思考(2′)
1、課件出示人字型屋頂?shù)膱D象,提問:(1)、屋頂設(shè)計成了哪種幾何圖形?(2)、它有什么特征?它是軸對稱圖形嗎?對稱軸是哪一條?(由日常生活中的等腰三角形引出課題,目的在于讓學(xué)生體會數(shù)學(xué)來源于生活,培養(yǎng)學(xué)生從實際問題中抽象出數(shù)學(xué)問題的能力,同時,為學(xué)習(xí)新知創(chuàng)造豐富的舊知環(huán)境,有利于幫助學(xué)生找準(zhǔn)新舊知識的連接點,特別是問題(2),其實就是等腰三角形三線合一性質(zhì)的伏筆。)
2、學(xué)生思考回答后,教師再提問引入課題:等腰三角形還有其他的特殊性質(zhì)嗎?這節(jié)課我們就來研究等腰三角形的性質(zhì)。(現(xiàn)代教學(xué)論認(rèn)為:在正式進(jìn)行探索和發(fā)現(xiàn)前,要讓學(xué)生對探索的'目標(biāo)、意義有十分明確的認(rèn)識,做好探索前的物質(zhì)準(zhǔn)備和精神準(zhǔn)備。)
。ǘ┯^察與表達(dá)(4′)
剪一剪:教師引導(dǎo)學(xué)生將課前準(zhǔn)備的長方形紙片按教材要求對折后剪下,再把它展開,看得到了一個什么圖形?(通過讓學(xué)生動手剪紙,獲得圖形的直觀感受,并為下面的折紙操作做好鋪墊,為學(xué)生提供參與數(shù)學(xué)活動的時間和空間,調(diào)動學(xué)生的主觀能動性,激發(fā)其好奇心和求知欲。)
想一想:1、剪紙過程中得到的⊿ABC有什么特點?
學(xué)生思考并交流意見,教師歸納并板書:在⊿ABC中,AB=AC,像這樣有兩邊相等的三角形叫等腰三角形。
再讓學(xué)生找一找生活中的等腰三角形。
2、除了剪紙的方法外,你還可以其他的方法作(畫)出等腰三角形嗎?
學(xué)生思考、討論、交流,教師在學(xué)生充分發(fā)表自己想法的基礎(chǔ)上給出等腰三角形的畫法,并畫出圖形,然后結(jié)合前面剪、畫的圖形介紹“腰”、“底邊”、“頂角”、“底角”等概念。(結(jié)合自已剪出的等腰三角形和畫出的圖形學(xué)習(xí)相關(guān)概念,加深印象。)
。ㄈ┝私馀c探究(14′)
1、提問:剛才剪出的等腰三角形ABC是軸對稱圖形嗎?它的對稱軸是什么?
學(xué)生思考、回顧剪紙過程,動手把等腰三角形ABC沿折痕對折,容易回答出⊿ABC是軸對稱圖形,折痕AD所在的直線是它的對稱軸。(讓學(xué)生認(rèn)識到動手操作也是一種驗證方式。)
2、把剪出的等腰三角形ABC沿折痕對折,找出其中重合的線段和角,并填在書上的表格中,你發(fā)現(xiàn)了什么現(xiàn)象?能猜一猜等腰三角形ABC有哪些性質(zhì)嗎?
①∠B=∠C →兩個底角相等
、贐D=CD →AD為底邊BC上的中線
③∠BAD=∠CAD →AD為頂角∠BAC的平分線
、堋螦DB=∠ADC=90°→AD為底邊BC上的高
教師在學(xué)生猜想的基礎(chǔ)上,引導(dǎo)學(xué)生觀察、完善、歸納出性質(zhì)1和性質(zhì)2:
性質(zhì)1等腰三角形的兩個底角相等(簡寫成“等邊對等角”);
性質(zhì)2等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(簡寫成“三線合一”)
。ㄍㄟ^教師的引導(dǎo),學(xué)生利用等腰三角形的對稱性,討論、歸納出等腰三角形的兩條性質(zhì),在這個過程中訓(xùn)練學(xué)生文字語言與符號語言的互換,培養(yǎng)學(xué)生自主探究的學(xué)習(xí)品質(zhì)和觀察分析、歸納概括的能力,發(fā)展形象思維。)
3、用全等三角形的知識驗證等腰三角形的性質(zhì)
。1)性質(zhì)1(等腰三角形的兩個底角相等)的條件和結(jié)論分別是什么?用數(shù)學(xué)符號如何表達(dá)條件和結(jié)論?如何證明?
教師引導(dǎo)學(xué)生根據(jù)猜想的結(jié)論畫出相應(yīng)的圖形,寫出已知和求證,師生共同分析證明思路,強調(diào)以下兩點:
、倮萌切蔚娜葋碜C明兩角相等,為證∠B=∠C,需證明以∠B、∠C為元素的兩個三角形全等,需要添加輔助線構(gòu)造符合證明要求的兩個三角形。
、谔砑虞o助線的方法有很多種,常見的有作頂角∠BAC的平分線,或作底邊BC上的中線,或作底邊BC上的高等,讓學(xué)生選擇一種輔助線并完成證明過程。
。2)回顧性質(zhì)1的證明方法,你能用這種方法證明性質(zhì)2(等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合)嗎?
讓學(xué)生模仿證明性質(zhì)2,并鼓勵學(xué)生用多種方法證明。
。ǖ妊切蔚男再|(zhì)的探索與驗證是本節(jié)課的重點和難點,本環(huán)節(jié)中,充分調(diào)動學(xué)生的主觀能動性,讓學(xué)生大膽猜想、小心求證,經(jīng)歷性質(zhì)證明的過程,增強理性認(rèn)識,體驗性質(zhì)的正確性和輔助線在幾何論證中的作用,在學(xué)生的自主探索中,完成了重點知識的教學(xué),突破了教學(xué)難點,培養(yǎng)了學(xué)生的合情推理能力和演繹推理的能力。)
。ㄋ模⿷(yīng)用與提高(10′)
1、課件出示:某房屋的頂角∠BAC=120°,過屋頂A的立柱AD⊥BC,屋椽AB=AC,求頂架上的∠B、∠C、∠CAD的度數(shù)。
。ū竟(jié)課從居民建筑人字梁結(jié)構(gòu)中抽象出幾何問題,通過實踐探究活動得出等腰三角形的性質(zhì)這一結(jié)論,在此,再將得到的結(jié)論應(yīng)用到實踐中,解決人字梁結(jié)構(gòu)中的實際問題,這樣既有前后呼應(yīng),又體現(xiàn)了“數(shù)學(xué)來源于生活,應(yīng)用于生活”的思想,有利于增強學(xué)生的數(shù)學(xué)應(yīng)用意識。)
、拧逜B=AC,AD⊥BC
∴∠_=∠_,_=_;
⑵∵AB=AC,BD=DC
∴∠_=∠_,_⊥_;
、恰逜B=AC,AD平分∠BAC
∴_⊥_,_=_
。ㄗ寣W(xué)生再次理解和運用等腰三角形的“三線合一”性質(zhì),以填空的形式及時鞏固所學(xué)知識,了解學(xué)生的學(xué)習(xí)效果,增強學(xué)生應(yīng)用知識的能力。)
3、課件出示:如圖(二),在⊿ABC中,AB=AC,點D在AC上,
且BD=AD,
、艌D中共有幾個等腰三角形?分別寫出它們的頂角與底角;
、颇隳芮蟪龈鹘堑亩葦(shù)嗎?
師生共同分析:⑴已知中沒有給出角度,需利用三角形內(nèi)角和為180°的條件來求具體度數(shù),但由于未知數(shù)過多,需根據(jù)已知各邊的關(guān)系尋找到⊿ABC的各角關(guān)系,由圖中的三個等腰三角形的底角及外角性質(zhì),可設(shè)∠A=X°,列方程解決。⑵強調(diào)此題圖形特殊,只有頂角為36°的等腰三角形才能滿足。
。ǜ木幷n本例題,使問題更富層次性與探究性,使學(xué)生認(rèn)識到從復(fù)雜圖形中分解出等腰三角形是利用性質(zhì)解決問題的關(guān)鍵,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力和方程的思想。)
等腰三角形的性質(zhì)的應(yīng)用,是這節(jié)課的又一重點,本環(huán)節(jié)就是通過運用這一性質(zhì)解決有關(guān)問題,讓學(xué)生在解答活動中提高運用知識和技能的能力,在掌握重點知識的同時,獲得成功的體驗,建立學(xué)習(xí)的自信心。
。ㄎ澹┩卣古c延伸(5′)
⑴等腰三角形底邊中點到兩腰的距離相等嗎?
教師指導(dǎo)學(xué)生動手畫圖,折紙,思考,討論得出結(jié)論,并用適當(dāng)?shù)姆椒炞C這一結(jié)論。
、评妙愃频姆椒,還可以得到等腰三角形中哪些線段相等?
教師引導(dǎo)學(xué)生尋找等腰三角形中其他相等的線段,如:兩腰上的高,兩腰上的中線,兩底角的平分線等。
。ㄍㄟ^學(xué)生動手實踐,增強學(xué)生動手能力,引導(dǎo)學(xué)生合作探究,更深入地認(rèn)識等腰三角形和性質(zhì),啟迪學(xué)生的發(fā)散思維。)
。┬牡门c體會(4′)
這節(jié)課我們主要研究了什么內(nèi)容?你有哪些收獲?
請用“通過今天這堂課的研究,我明白了(),我的收獲與感受有(),我還有疑惑之處是()”的模式來總結(jié)、評價這堂課的學(xué)習(xí)。
。ㄗ寣W(xué)生按上述的模式進(jìn)行小結(jié),通過對本節(jié)課的回顧,增強學(xué)生對等腰三角形的理解和對軸對稱圖形的理解,培養(yǎng)學(xué)生“學(xué)習(xí)、總結(jié)、學(xué)習(xí)、反思”的良好習(xí)慣,同時通過自我的評價來獲得成功的快樂,提高學(xué)生學(xué)習(xí)的自信心。)
。ㄆ撸┚毩(xí)與作業(yè)(1′)
1、略(詳見課件);
2、教科書習(xí)題14.3第1、4、6題;
3、教科書第143頁練習(xí)題1、2、3。
。ㄗ寣W(xué)生體會等腰三角形的性質(zhì)在現(xiàn)實生活中的應(yīng)用價值,學(xué)會用數(shù)學(xué)知識解決實際問題,進(jìn)一步鞏固所學(xué)知識,及時反饋,查漏補缺,分層次布置作業(yè),滿足不同學(xué)生的發(fā)展需求,體現(xiàn)層次性和開放性。)
設(shè)計思想:
現(xiàn)代數(shù)學(xué)教學(xué)觀念要求學(xué)生從“學(xué)會”向“會學(xué)”轉(zhuǎn)變。所以本節(jié)課在教學(xué)方法的設(shè)計上,把重點放在了逐步展示知識的形成過程上,先讓學(xué)生通過剪紙來認(rèn)識等腰三角形;再通過折紙、猜測、驗證等腰三角形的性質(zhì);然后運用全等三角形的知識加以論證,在教學(xué)設(shè)計中遵循由個別形象到一般抽象、由感性到理性的認(rèn)知規(guī)律,使學(xué)生的思維由形象直觀過渡到抽象的邏輯演繹,層層展開,步步深入,真正實現(xiàn)學(xué)生為主體的教學(xué)宗旨。在教學(xué)設(shè)計中還突出了三個注重:
1、注重讓學(xué)生參與知識的形成過程,體現(xiàn)應(yīng)用數(shù)學(xué)知識解決問題的樂趣;
2、注重師生間、學(xué)生間的互動協(xié)作,共同提高;
3、注重知能統(tǒng)一,讓學(xué)生在獲取知識的同時,掌握方法,靈活運用。
數(shù)學(xué)教案:等腰三角形的判定 4
一、說教材分析
1、本課內(nèi)容在初中數(shù)學(xué)教學(xué)中起著比較重要的作用,它是對三角形的性質(zhì)的呈現(xiàn)。通過等腰三角形的性質(zhì)反映在一個三角形中等邊對等角,等角對等邊的邊角關(guān)系,并且對軸對稱圖形性質(zhì)的直觀反映(三線合一)。并且在以后直角三角形和相似三角形中等腰三角形的性質(zhì)也占有一席之地。
2、教學(xué)目標(biāo):要求學(xué)生掌握等腰三角形的性質(zhì)和等邊三角形的每個角都相等,且每個角都為60度,使學(xué)生會用等腰三角形的性質(zhì)定理進(jìn)行證明或計算,逐步滲透幾何證題的基本方法:分析法和綜合法,培養(yǎng)學(xué)生的聯(lián)想能力
3、教學(xué)重點、難點:等腰三角形的性質(zhì)定理是本課的重點等腰三角形“三線合一”性質(zhì)的運用是本課的難點
4、為了使學(xué)生了解這堂課,本課要求學(xué)生自制一個等腰三角形模型,教學(xué)過程采用多媒體教學(xué)。
二、說教學(xué)方法:
“教必有法而教無定法”,只有方法得當(dāng),才會有效。根據(jù)本課內(nèi)容特點和初二學(xué)生思維活動的特點,我采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。
三、說學(xué)生學(xué)法。
“授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的知識,首先教師應(yīng)創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識入手,讓學(xué)生自己在某一種環(huán)境下不知不覺中運用舊知識的鑰匙去打開新知識的大門,進(jìn)入新知識的領(lǐng)域,從不同角度去分析、解決新問題,發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
四、說教學(xué)程序
1、等腰三角形的有關(guān)概念,軸對稱圖形的有關(guān)概念。
提問:等腰三角形是不是軸對稱圖形?什么是它的對稱軸?
2、教師演示(模型)等腰三角形是軸對稱圖形的實驗,并讓學(xué)生做同樣的實驗,引導(dǎo)學(xué)生觀察重合部分,發(fā)現(xiàn)等腰三角形的一些性質(zhì)。
3、新課:讓學(xué)生由實驗或演示指出各自的發(fā)現(xiàn),并加以引導(dǎo),用規(guī)范的數(shù)學(xué)語言進(jìn)行逐條歸納,最后得出等腰三角形的性質(zhì)定理1、2。
性質(zhì)定理1:等腰三角形的兩個底角相等
在△ ABC中,∵AB=AC()∴∠B= ∠C()
性質(zhì)定理:等腰三角形的.頂角平分線、底邊上的中線和高線互相重合
、 ∵ AB=AC ∠1= ∠ 2()∴BD=DC AD⊥BC()
② ∵ AB=AC BD=DC()∴ ∠1= ∠ 2 AD⊥BC()
、 ∵ AB=AC AD⊥BC于D()∴ BD=DC ∠1= ∠ 2()
4、對新知識的感知性應(yīng)用
指導(dǎo)學(xué)生表述證明過程。
思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?
課堂練習(xí):
p。227練習(xí)1,練習(xí)2(指出這是等邊三角形的性質(zhì)定理)。
5、小結(jié):
。1)等腰三角形的性質(zhì)定理。
。2)等邊三角形的性質(zhì)
。3)利用等腰三角形的性質(zhì)定理可證明:兩角相等,兩線段相等,兩直線互相垂直。
。4)聯(lián)想方法要經(jīng)常運用,對解題大有裨益。
五、布置作業(yè):
見作業(yè)本
六、對于本節(jié)的幾點思考
1、本節(jié)的學(xué)習(xí)任務(wù)比較重要,有定理的證明、定理的計算和證題應(yīng)用,所以本人針對學(xué)生的特點,在上節(jié)課例的掌握好的情況下,讓學(xué)生自己去發(fā)現(xiàn)、去聯(lián)想,能充分地發(fā)揮學(xué)生主觀能動性。練習(xí)2其目的有二:(一)使學(xué)生在復(fù)習(xí)本節(jié)知識。(二)為下一節(jié)內(nèi)容鋪墊。
2、通過學(xué)生自己動手實驗得到兩個定理的內(nèi)容,可以使他們比較好的掌握知識、提高學(xué)習(xí)數(shù)學(xué)的興趣,達(dá)到了事半功倍之效。
3、在整個教學(xué)過程中,本人利用多種教學(xué)方法,使學(xué)生在實驗中提出問題,解決問題的途徑,而不知不覺地進(jìn)入學(xué)習(xí)氛圍,把學(xué)生從被動學(xué)習(xí)步入主動想學(xué)的.習(xí)慣。
總之,在本節(jié)教學(xué)中,我始終堅持以學(xué)生為主體,教師為主導(dǎo),致力啟用學(xué)生已掌握的知識,充分調(diào)動學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動中,在整個教學(xué)過程中我以啟發(fā)學(xué)生,挖掘?qū)W生潛力,讓他們展開聯(lián)想的思維,培養(yǎng)其能力為主旨而發(fā)展的。
數(shù)學(xué)教案:等腰三角形的判定 5
一、教材分析
1、教材分析之地位和作用
《等腰三角形的性質(zhì)》是“華東師大版七年級數(shù)學(xué)(下)”第九章第三節(jié)的內(nèi)容。本課安排在《軸對稱的認(rèn)識》后,明確了《等腰三角形的性質(zhì)》與《軸對稱的認(rèn)識》的聯(lián)系,起到知識的鏈接與開拓的作用。本課內(nèi)容在初中數(shù)學(xué)教學(xué)中起著比較重要的作用,它是對三角形的性質(zhì)的呈現(xiàn)。通過等腰三角形的性質(zhì)反映在一個三角形中“等邊對等角”的邊角關(guān)系,并且是對軸對稱圖形性質(zhì)的直觀反映(三線合一)。它所倡導(dǎo)的“觀察---發(fā)現(xiàn)---猜想---論證”的數(shù)學(xué)思想方法是今后研究數(shù)學(xué)的基本思想方法。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
2、教材分析之教學(xué)目標(biāo)
、僦R與技能目標(biāo):
掌握等腰三角形的有關(guān)概念和相關(guān)性質(zhì)。熟練運用等腰三角形的性質(zhì)解決等腰三角形內(nèi)角以及邊的計算問題。
、谶^程與方法目標(biāo):
通過對性質(zhì)的探究活動和例題的分析,培養(yǎng)學(xué)生多角度思考問題的習(xí)慣,提高學(xué)生分析問題和解決問題的能力。
③情感與態(tài)度目標(biāo):
通過對等腰三角形的觀察、試驗、歸納,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,突出數(shù)學(xué)就在我們身邊。在操作活動中,培養(yǎng)學(xué)生之間的合作精神,在獨立思考的同時能夠認(rèn)同他人。
3、教材分析之教學(xué)重難點
重點:探索等腰三角形“等邊對等角”和“三線合一”的性質(zhì)。
(這兩個性質(zhì)對于平面幾何中的計算,以及今后的證明尤為重要,故確定為重點)
難點:等腰三角形中關(guān)于底和腰,底角和頂角的計算問題。
(由于等腰三角形底和腰,底角和頂角性質(zhì)特點很容易混淆,而且它們在用法和討論上很有考究,只能練習(xí)實踐中獲取經(jīng)驗,故確定為難點。)
4、教材分析之教法
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”,“教必有法而教無定法”,只有方法得當(dāng),才會有效。根據(jù)本課內(nèi)容特點和初一學(xué)生思維活動的特點,我采用了教具直觀教學(xué)法,聯(lián)想發(fā)現(xiàn)教學(xué)法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。
5、教材分析之學(xué)法
最有價值的知識是關(guān)于方法的知識,首先對于我們教師應(yīng)該創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的`知識入手,讓學(xué)生自己不知不覺中運用舊知識的鑰匙去打開新知識的大門,進(jìn)入新知識的領(lǐng)域。本節(jié)課我將采用學(xué)生小組合作,實驗操作,觀察發(fā)現(xiàn),師生互動,學(xué)生互動的學(xué)習(xí)方式。學(xué)生通過小組合作學(xué)會“主動探究----主動總結(jié)---主動提高”。突出學(xué)生是學(xué)習(xí)的主體,他們在感受知識的過程中,提高他們“探究---發(fā)現(xiàn)---聯(lián)想---概括”的能力!
二、教學(xué)過程:
1、創(chuàng)設(shè)情景
、購(fù)習(xí)提問:向同學(xué)們出示幾張精美的建筑物圖片;
問題:軸對稱圖形的概念?這些圖片中有軸對稱圖形嗎?
、谝胄抡n:再次通過精美的建筑物圖片,找出里面的等腰三角形。
問題:等腰三角形是軸對稱圖形嗎?
、巯嚓P(guān)概念:定義:兩條邊相等的三角形叫做等腰三角形。
邊:等腰三角形中,相等的兩條邊叫做腰,另一條邊叫做底邊.
角:等腰三角形中,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角.
2、探究問題
、賱觿邮郑鹤屚瑢W(xué)們做出一張等腰三角形的半透明的紙片,每個人的等腰三角形的大小和形狀可以不一樣,把紙片對折,讓兩腰重合在一起,你能發(fā)現(xiàn)什么現(xiàn)象?請你盡可能多的寫出結(jié)論。
、诘贸鼋Y(jié)論:可讓學(xué)生有充分的時間觀察、思考、交流、可能得到的結(jié)論:
(1)等腰三角形是軸對稱圖形
(2)∠B=∠C
(3)BD=CD,AD為底邊上的中線
(4)∠ADB=∠ADC=90°,AD為底邊上的高線
(5)∠BAD=∠CAD,AD為頂角平分線
3、重要性質(zhì)
性質(zhì)1:等腰三角形的兩底角相等。(簡寫成“等邊對等角”)
性質(zhì)2:等腰三角形的頂角的平分線,底邊上的中線,底邊上的高互相重合。
(簡稱“三線合一”)
如圖,在△ABC中,AB=AC,點D在BC上
(1)如果∠BAD=∠CAD,那么AD⊥BC,BD=CD
(2)如果BD=CD,那么∠BAD=∠CAD,AD⊥BC
(3)如果AD⊥BC,那么∠BAD=∠CAD,BD=CD
(為了方便記憶可以說成“知一求二!”)
數(shù)學(xué)教案:等腰三角形的判定 6
教學(xué)目標(biāo)
1、了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書寫格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
教學(xué)重點
了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書寫格式。
教學(xué)難點
能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
教學(xué)方法
觀察法
教學(xué)后記
教學(xué)內(nèi)容及過程學(xué)生活動
一、復(fù)習(xí):
1、什么是等腰三角形?
2、你會畫一個等腰三角形嗎?并把你畫的等腰三角形栽剪下來。
3、試用折紙的辦法回憶等腰三角形有哪些性質(zhì)?
二、新課講解:
之前,我們已經(jīng)證明了有關(guān)平行線的一些結(jié)論,運用下面的公理和已經(jīng)證明的定理,我們還可以證明有關(guān)三角形的一些結(jié)論。
同學(xué)們和我一起來回憶上學(xué)期學(xué)過的公理:
1、兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;
2、兩條平行線被第三條直線所截,同位角相等;
3、兩邊夾角對應(yīng)相等的兩個三角形全等;(SAS)
4、兩角及其夾邊對應(yīng)相等的兩個三角形全等;(ASA)
5、三邊對應(yīng)相等的兩個三角形全等;(SSS)
6、全等三角形的對應(yīng)邊相等,對應(yīng)角相等。
由公理5、3、4、6可容易證明下面的推論:
推論兩角及其中一角的對邊對應(yīng)相等的兩個三角形全等。(AAS)
證明過程:
已知:∠A=∠D,∠B=∠E,BC=EF
求證:△ABC≌△DEF
證明:∵∠A=∠D,∠B=∠E(已知)
∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形內(nèi)角和等于180°)
∠C=180°—(∠A+∠B)
∠F=180°—(∠D+∠E)
∠C=∠F(等量代換)
BC=EF(已知)
△ABC≌△DEF(ASA)
這個推論雖然簡單,但也應(yīng)讓學(xué)生進(jìn)行證明,以熟悉的.基本要求和步驟,為下面的推理證明做準(zhǔn)備。
三、議一議:
。1)還記得我們探索過的等腰三角形的性質(zhì)嗎?
。2)你能利用已有的公理和定理證明這些結(jié)論嗎?
等腰三角形(包括等邊三角形)的性質(zhì)學(xué)生已經(jīng)探索過,這里先讓學(xué)生盡可能回憶出來,然后再考慮哪些能夠立即證明。
定理:等腰三角形的兩個底角相等。
這一定理可以簡單敘述為:等邊對等角。
已知:如圖,在ABC中,AB=AC。
求證:∠B=∠C
證明:取BC的中點D,連接AD。
∵AB=AC,BD=CD,AD=AD,
∴△ABC△≌△ACD(SSS)
∴∠B=∠C(全等三角形的對應(yīng)邊角相等)
四、想一想:
在上圖中,線段AD還具有怎樣的性質(zhì)?為什么?由此你能得到什么結(jié)論?
應(yīng)讓學(xué)生回顧前面的證明過程,思考線段AD具有的性質(zhì)和特征,從而得到結(jié)論,這一結(jié)合通常簡述為“三線合一”。
推論等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合。
五、隨堂練習(xí):
做教科書習(xí)題第1,2題。
六、課堂小結(jié):
通過本課的學(xué)習(xí)我們了解了作為基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書寫格式。經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。探體會了反證法的含義。
七、課外作業(yè):
同步練習(xí)
板書設(shè)計:
這個推論雖然簡單,但也應(yīng)讓學(xué)生進(jìn)行證明,以熟悉的基本要求和步驟,為下面的推理證明做準(zhǔn)備。
學(xué)生充分討論問題1,借助等腰三角形紙片回憶有關(guān)性質(zhì)
讓學(xué)生盡可能回憶出來,然后再考慮哪些能夠立即證明
讓同學(xué)們通過探索、合作交流找出其他的證明方法
學(xué)生回顧前面的證明過程,思考線段AD具有的性質(zhì)和特征,討論圖中存在的相等的線段和相等的角,發(fā)現(xiàn)等腰三角形性質(zhì)定理的推論,從而得到結(jié)論,這一結(jié)合通常簡述為“三線合一”。
數(shù)學(xué)教案:等腰三角形的判定 7
教學(xué)目標(biāo)
1、掌握證明的基本步驟和書寫格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程。能夠用綜合法證明直角三角形的有關(guān)性質(zhì)定理和等邊三角形的判定定理。
教學(xué)重點
等邊三角形的判定定理和直角三角形的性質(zhì)定理。
教學(xué)難點
能夠用綜合法證明等邊三角形的判定定理和直角三角形的性質(zhì)定理。
教學(xué)方法
教學(xué)后記
教學(xué)內(nèi)容及過程
教師活動學(xué)生活動
一、定理:一個角等于60°的等腰三角形是等邊三角形
1、引導(dǎo)學(xué)生回憶上節(jié)課的內(nèi)容,讓學(xué)生思考:等腰三角形滿足什么條件時便成為等邊三角形?讓學(xué)生對普遍聯(lián)系和相互轉(zhuǎn)化有一個感性的認(rèn)識。
2、肯定學(xué)生的回答,并讓學(xué)生進(jìn)一步思考:有一個角是60°的`等腰三家形是等邊三角形嗎?組織學(xué)生交流自己的想法。滲透分類討論的思維方法。
3、關(guān)注學(xué)生得出證明思路的過程,講評。講解定理:有一個角是60°的等腰三角形是等邊三角形。
二、一種特殊直角三角形的性質(zhì)
1、讓學(xué)生拼擺事先準(zhǔn)備好的三角尺,提問:能拼成一個怎樣的三角形?能否拼出一個等邊三角形?并說明理由。
2、肯定學(xué)生的發(fā)現(xiàn)和解釋,在此基礎(chǔ)上進(jìn)一步深入提問:在直角三角形中,30°所對的直角邊與斜邊有怎樣的大小關(guān)系?
3、演示規(guī)范的證明步驟,同時引導(dǎo)學(xué)生意識到:通過實際操作探索出的結(jié)論還需要給予理論證明。
4、讓學(xué)生準(zhǔn)備一張正方形紙片,,按要求動手折疊。
5、講解例題,應(yīng)用定理。
6、布置學(xué)生做練習(xí)。
練習(xí):課本隨堂練習(xí)1
三、課堂小結(jié):
通過這節(jié)課的學(xué)習(xí)你學(xué)到了什么知識?了解了什么證明方法?
四、作業(yè):同步練習(xí)
板書設(shè)計:
1、積極地自主探索、思考等腰三角形成為等邊三角形的條件?赡軙䦶倪吅徒莾蓚角度給出答案。
2、積極思考,通過老師的點撥,分類討論當(dāng)這個角分別是底角和頂角的情況。
3、認(rèn)真聽講,體會分類討論的數(shù)學(xué)思維方法,理解定理。
1、積極動手操作,并很快得到結(jié)果:可以拼出等邊三角形。
2、在拼擺的基礎(chǔ)上繼續(xù)探索,得出結(jié)論。并在探索的過程中得到證明的思路。
3、認(rèn)真聽講,體會從探索和嘗試中得到結(jié)論的過程和證明方法的步驟,掌握定理。
4、很有興趣地折疊紙片,體會定理的應(yīng)用。
5、聽講,體會定理的應(yīng)用。
6、認(rèn)真做練習(xí)。
。▽W(xué)生小結(jié):掌握證明與等邊三角形、直角三角形有關(guān)的性質(zhì)定理和判定定理)
數(shù)學(xué)教案:等腰三角形的判定 8
教學(xué)目標(biāo)
1、掌握證明的基本步驟和書寫格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
3、結(jié)合實例體會反證法的含義。
教學(xué)重點
等腰三角形的關(guān)性質(zhì)定理和判定定理。
教學(xué)難點
能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
教學(xué)方法
教學(xué)后記
教學(xué)內(nèi)容及過程
教師活動學(xué)生活動
一、等腰三角形性質(zhì)的探究
1、讓學(xué)生回憶上節(jié)課的教學(xué)內(nèi)容,引導(dǎo)學(xué)生思考從等腰三角形中能找到哪些相等的線段。
2、播放課件,結(jié)合剛才的問題講解例1的命題,并為后面將此性質(zhì)拓展埋下伏筆。
3、分別演示:
∠ABC,∠ACE=∠ACB,k=,時,BD是否與CE相等。引導(dǎo)學(xué)生探究、猜測當(dāng)k為其他整數(shù)時,BD與CE的關(guān)系。
4、引導(dǎo)學(xué)生探究,對于上述例題,當(dāng)AD=AC,AE=AB,k=,時,通過對例題的引申,培養(yǎng)學(xué)生的發(fā)散思維,經(jīng)歷探究—猜測—證明的學(xué)習(xí)過程。
5、引導(dǎo)學(xué)生進(jìn)一步推廣,把上面3、4中的k取一般的自然數(shù)后,原結(jié)論是否仍然成立?要求學(xué)生說明理由或給出證明。
6、對學(xué)生探究的'結(jié)果予以匯總、點評,鼓勵學(xué)生在自己做題目的時候也要多思多想,并要求學(xué)生對猜測的結(jié)果給出證明。
7、提出新的問題,引導(dǎo)學(xué)生從“等角對等邊”這個命題的反面思考問題,即思考它的逆命題是否成立。適時地引導(dǎo)學(xué)生思考可以用哪些方法證明?培養(yǎng)學(xué)生的推理能力。
8、歸納學(xué)生提出的各種證法,清楚的分析證明的思路,培養(yǎng)學(xué)生演繹證明的初步的推理能力。
9、啟發(fā)學(xué)生思考:在一個三角形中,如果兩個角不相等,那么這兩個角所對的邊也不相等,這個結(jié)論是否成立?如果成立,能否證明。這實際上是“等邊對等角”的逆否命題,通過這樣的表述可以提高學(xué)生的思維能力。
10、總結(jié)這一證明方法,敘述并闡釋反證法的含義,讓學(xué)生了解。
11、小結(jié)這兩個課時的內(nèi)容。
作業(yè):
同步練習(xí)
板書設(shè)計:
1、積極思考,回憶以前所學(xué)知識,聯(lián)想新問題。
2、認(rèn)真觀看例1圖形中線段的關(guān)系,積極思考,認(rèn)真聽講。
3、對于課件的演示很感興趣,憑直觀感覺可以猜測,不管k為何值,BD=CE總成立;谇懊胬}的啟發(fā),想要給出證明。一部分學(xué)生可以自己給出證明,一部分學(xué)生需要老師的幫助。
4、在已經(jīng)探究了角的大小的改變對于BD,CE的等長性沒有影響,有了一些成就感之后,又面臨新的任務(wù):BD=CE嗎?因此學(xué)生會滿懷熱情地進(jìn)行這部分探究活動,而且有了前面的體驗,探究也會比較順利。
5、興致高漲,憑直覺猜測結(jié)論仍然成立。但有些學(xué)生給出全部證明可能會有困難。
6、認(rèn)真聽講,在掌握結(jié)論的同時受到老師的鼓勵,有很高的熱情進(jìn)行后續(xù)學(xué)習(xí)。
7、較少接觸這樣的命題,因此會感到新鮮,有用已知公理和定理對命題的真假性進(jìn)行判斷的欲望。在老師指導(dǎo)下完成證明。
8,積極動腦思考,認(rèn)真聽講,獲得對演繹證明的初步體會。
9、可以從直觀上得出結(jié)論,但是此處要求證明,體會到證明的必要性。遇到認(rèn)知上的沖突,激起學(xué)習(xí)欲望。
10、懷有強烈的求知欲聽講,對反證法有了感性認(rèn)識和一定的理解。
11、體會老師的講解,并根據(jù)小結(jié)記憶掌握知識。
。▽W(xué)生小結(jié):掌握證明的基本步驟和書寫格式。經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過程。能夠用綜合法證明等腰三角形的兩條腰上的中線(高)、兩底角的平分線相等,并由特殊結(jié)論歸納出一般結(jié)論。等腰三角形的判定定理。了解反證法的推理方法。)
數(shù)學(xué)教案:等腰三角形的判定 9
一、教案背景
1、面向?qū)W生:初中 學(xué)科:數(shù)學(xué)
2、課時:1
3、學(xué)生課前準(zhǔn)備:
(1)回憶等腰三角形的有關(guān)性質(zhì)
(2)等腰三角形紙片
(3)完成課后習(xí)題
二、教學(xué)課題
課題:等腰三角形的性質(zhì)與判定
(1) 課堂活動以學(xué)生為主體,教師為主導(dǎo),重點放在如何調(diào)動學(xué)生的積極性,讓學(xué)生觀
察、分析、歸納概括,主動獲得知識。
(2) 組織學(xué)生欣賞圖片,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生獲得知識,提高能力。
(3) 在教學(xué)中,向?qū)W生滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生說理的能力。
三、教材分析:
1、 等腰三角形是在三角形知識基礎(chǔ)上的繼續(xù)深入,如何利用學(xué)習(xí)三角形的過程中已經(jīng)形成的思路和觀點,也是對理解“等腰”這個條件造成的特殊結(jié)果的重要之處。
2、 等腰三角形是基本的幾何圖形之一,在今后的幾何學(xué)習(xí)中有著重要的地位,是構(gòu)成復(fù)雜圖形的基本單位,等腰三角形的定理為今后有關(guān)幾何問題的解決提供了有力的工具。
3、 對稱是幾何圖形觀察和思維的'重要思想,也是解決生活中實際問題的常用出發(fā)點之一,學(xué)好本節(jié)知識對加深對稱思想的理解有重要意義。
4、 例題中的幾何運算,是數(shù)形結(jié)合的思想的初步體驗,如何在幾何中結(jié)合代數(shù)的等量思想是教學(xué)中應(yīng)重點研究的問題。
5、 如何把握合情推理的書寫及重點問題,本課中的例題也進(jìn)一步做了示范,可以認(rèn)真研究。
6、 本課對學(xué)生的動手能力,觀察能力都有一定的要求,對培養(yǎng)學(xué)生靈活的思維,提高學(xué)生解決實際問題的能力都有重要的意義。
7、 本課內(nèi)容安排上難度和強度不高,適合學(xué)生討論,可以充分開展合作學(xué)習(xí),培養(yǎng)學(xué)生的合作精神和團(tuán)隊競爭的意識。
8、 課本為學(xué)生提供自主探索的空間,然后在進(jìn)行證明,將探索和證明有機的結(jié)合起來,引導(dǎo)學(xué)生不斷感受證明的必要性。
四、教學(xué)方法
本節(jié)課采用合作探究的教學(xué)方法,在教師的引導(dǎo)下,通過合作探究的方式、發(fā)現(xiàn)、分析問題并解決問題,為學(xué)生提供從事數(shù)學(xué)活動的機會,幫助學(xué)生進(jìn)行自主探究與合作交流。以活動形式展開教學(xué),綜合運用啟發(fā)式、多媒體演示、互聯(lián)網(wǎng)探索等教學(xué)手段,培養(yǎng)學(xué)生的主體意識。
五、教學(xué)過程
教學(xué)目標(biāo):
1、知識與技能:經(jīng)歷探索——發(fā)現(xiàn)——猜想——證明等腰三角形的性質(zhì)和判定的過程,初步文字命題的證明方法、基本步驟和書寫格式。
2、過程與方法:會運用等腰三角形的性質(zhì)和判定進(jìn)行有關(guān)的計算與簡單的證明。
3、情感態(tài)度與價值觀:逐步學(xué)會分析幾何證明題的方法及用規(guī)范的數(shù)學(xué)語言表述證明過程。
教學(xué)重點:等腰三角形的性質(zhì)與判定定理的證明
教學(xué)難點:證明過程的書寫格式,用規(guī)范的符號語言描述證明過程
教學(xué)媒體:多媒體
六、教學(xué)過程:
(一)回顧知識
1、什么叫證明?什么叫定理?
2、證明與圖形有關(guān)的命題,一般步驟有哪些?
3、我們初中數(shù)學(xué)中,選用了哪些真命題作為基本事實?此外,還有什么被看作是基本事實?
設(shè)計說明:師提出問題,回顧舊知識,達(dá)到溫故而知新的目的,學(xué)生以小組為單位討論交流
(二)創(chuàng)設(shè)情境
觀察圖片
百度圖片搜索_等腰三角形金字塔的搜索結(jié)果
1、什么叫做等腰三角形?(等腰三角形的定義)你能用刻度尺華畫一個等腰三角形嗎?
2、你能畫出它的頂角平分線嗎?等腰三角形有哪些性質(zhì)?
3、上述性質(zhì)你是怎么得到的?(不妨動手操作做一做)
4、這些性質(zhì)都是真命題嗎?能否用從基本事實出發(fā),對它們進(jìn)行證明?
(三)探索活動
1、合作與討論:說明你所畫的三角形是等腰三角形。證明:等腰三角形的兩個底角相等。
2、思考與討論:說明你所畫的是頂角的平分線。
怎樣證明:等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。
3、通過上面兩個問題的證明,我們得到了等腰三角形的性質(zhì)定理。
定理:等腰三角形的兩個底角相等,(簡稱:“等邊對等角”)
等邊對等角_百度百科
設(shè)計說明:引導(dǎo)學(xué)生動手操作,讓學(xué)生真正成為學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的引導(dǎo)者,教師引導(dǎo)學(xué)生思考探究,逐步嘗試運用說理的方式進(jìn)行說明,教師引導(dǎo)學(xué)生,文字語言,
圖形語言和幾何語言間的互相轉(zhuǎn)換。 已知:如圖,在△ABC中,AB=AC 求證:∠B=∠C
定理:等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合,(簡稱:“三線合一”) A
BD C4、你能寫出上面定理的符號語言嗎?
5、總結(jié)
數(shù)學(xué)教案:等腰三角形的判定 10
教學(xué)目標(biāo)
。ㄒ唬┙虒W(xué)知識點
1、等腰三角形的概念、
2、等腰三角形的性質(zhì)、
3、等腰三角形的概念及性質(zhì)的應(yīng)用、
1、經(jīng)歷作(畫)出等腰三角形的過程,從軸對稱的角度去體會等腰三角形的特點、
2、探索并掌握等腰三角形的性質(zhì)、
。ㄈ┣楦信c價值觀要求
通過學(xué)生的操作和思考,使學(xué)生掌握等腰三角形的相關(guān)概念,并在探究等腰三角形性質(zhì)的過程中培養(yǎng)學(xué)生認(rèn)真思考的習(xí)慣、
教學(xué)重點
1、等腰三角形的概念及性質(zhì)、
2、等腰三角形性質(zhì)的應(yīng)用、
教學(xué)難點
等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用、
教學(xué)方法
探究歸納法、
教具準(zhǔn)備
師:多媒體課件、投影儀;
生:硬紙、剪刀、
教學(xué)過程
1、提出問題,創(chuàng)設(shè)情境
(師)在前面的學(xué)習(xí)中,我們認(rèn)識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計一些美麗的圖案、這節(jié)課我們就是從軸對稱的角度來認(rèn)識一些我們熟悉的幾何圖形、來研究:
、偃切问禽S對稱圖形嗎?
、谑裁礃拥娜切问禽S對稱圖形?
(生)有的三角形是軸對稱圖形,有的三角形不是。
。◣煟┠鞘裁礃拥娜切问禽S對稱圖形?
。ㄉM足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形。
。◣煟┖芎茫覀冞@節(jié)課就來認(rèn)識一種成軸對稱圖形的三角形──等腰三角形。
2、導(dǎo)入新課
。◣煟┩瑢W(xué)們通過自己的思考來做一個等腰三角形。作一條直線L,在L上取點A,在L外取點B,作出點B關(guān)于直線L的對稱點C,連結(jié)AB、BC、CA,則可得到一個等腰三角形。
。ㄉ遥┰诩淄瑢W(xué)的做法中,A點可以取直線L上的任意一點。
。◣煟⿲Γ催@種方法我們可以得到一系列的等腰三角形、現(xiàn)在同學(xué)們拿出自己準(zhǔn)備的硬紙和剪刀,按自己設(shè)計的方法,也可以用課本P138探究中的方法,剪出一個等腰三角形。
(師)按照我們的做法,可以得到等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形、相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角、同學(xué)們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角。
(師)有了上述概念,同學(xué)們來想一想。
。ㄑ菔菊n件)
1、等腰三角形是軸對稱圖形嗎?請找出它的對稱軸。
2、等腰三角形的兩底角有什么關(guān)系?
3、頂角的平分線所在的直線是等腰三角形的對稱軸嗎?
4、底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?
。ㄉ祝┑妊切问禽S對稱圖形、它的對稱軸是頂角的平分線所在的直線、因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線。
(師)同學(xué)們把自己做的等腰三角形進(jìn)行折疊,找出它的對稱軸,并看它的兩個底角有什么關(guān)系。
。ㄉ遥┪野炎约鹤龅牡妊切握郫B后,發(fā)現(xiàn)等腰三角形的兩個底角相等。
。ㄉ┪野训妊切握郫B,使兩腰重合,這樣頂角平分線兩旁的部分就可以重合,所以可以驗證等腰三角形的對稱軸是頂角的平分線所在的直線。
。ㄉ。┪野训妊切窝氐走吷系闹芯對折,可以看到它兩旁的部分互相重合,說明底邊上的中線所在的`直線是等腰三角形的對稱軸。
。ㄉ欤├蠋,我發(fā)現(xiàn)底邊上的高所在的直線也是等腰三角形的對稱軸。
。◣煟┠銈冋f的是同一條直線嗎?大家來動手折疊、觀察。
。ㄉR聲)它們是同一條直線。
。◣煟┖芎、現(xiàn)在同學(xué)們來歸納等腰三角形的性質(zhì)。。
(生)我沿等腰三角形的頂角的平分線對折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。
。◣煟┖芎茫蠹铱雌聊弧
。ㄑ菔菊n件)
等腰三角形的性質(zhì):
1、等腰三角形的兩個底角相等(簡寫成“等邊對等角”)
2、等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”)、
。◣煟┯缮厦嬲郫B的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì)、同學(xué)們現(xiàn)在就動手來寫出這些證明過程)
。ㄍ队皟x演示學(xué)生證明過程)
(生甲)如右圖,在ABC中,AB=AC,作底邊BC的中線AD,因為
所以BAD≌CAD(SSS)、
所以∠B=∠C、
。ㄉ遥┤缬覉D,在ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為
所以BAD≌CAD、
所以BD=CD,∠BDA=∠CDA=∠BDC=90°。
。◣煟┖芎,甲、乙兩同學(xué)給出了等腰三角形兩個性質(zhì)的證明,過程也寫得很條理、很規(guī)范、下面我們來看大屏幕。
。ㄑ菔菊n件)
。ɡ1)如圖,在ABC中,AB=AC,點D在AC上,且BD=BC=AD,求:ABC各角的度數(shù)、
。◣煟┩瑢W(xué)們先思考一下,我們再來分析這個題、
。ㄉ└鶕(jù)等邊對等角的性質(zhì),我們可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形內(nèi)角和為180°,就可求出ABC的三個內(nèi)角。
。◣煟┻@位同學(xué)分析得很好,對我們以前學(xué)過的定理也很熟悉、如果我們在解的過程中把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷。
。ㄕn件演示)
。ɡ┮驗锳B=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等邊對等角)、
設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x、
于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。
在ABC中,∠A=35°,∠ABC=∠C=72°、
。◣煟┫旅嫖覀兺ㄟ^練習(xí)來鞏固這節(jié)課所學(xué)的知識、
3、隨堂練習(xí)
。ㄒ唬┱n本P141練習(xí)1、2、3。
練習(xí)
1、如下圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)、
答案:(1)72°(2)30°
2、如右圖,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底邊BC上的高,標(biāo)出∠B、∠C、∠BAD、∠DAC的度數(shù),圖中有哪些相等線段?
答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、
3、如右圖,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)、
答:∠B=77°,∠C=38、5°、
。ǘ╅喿x課本P138~P140,然后小結(jié)、
4、課時小結(jié)
這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應(yīng)用、等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高、
我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們、
5、課后作業(yè)
。ㄒ唬┱n本P147─1、3、4、8題、
。ǘ1、預(yù)習(xí)課本P141~P143、
2、預(yù)習(xí)提綱:等腰三角形的判定、
6、活動與探究
如右圖,在ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E、
求證:AE=CE、
過程:通過分析、討論,讓學(xué)生進(jìn)一步了解全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)、
結(jié)果:
證明:延長CD交AB的延長線于P,如右圖,在ADP和ADC中
ADP≌ADC、
∠P=∠ACD、
又DE∥AP,
∠4=∠P、
∠4=∠ACD、
DE=EC、
同理可證:AE=DE、
AE=CE、
板書設(shè)計
數(shù)學(xué)教案:等腰三角形的判定 11
一、教學(xué)目標(biāo)
1.知識與技能
(1)理解公理,能夠舉一反三,證明等腰三角形的性質(zhì)定理;
(2)能夠通過全等三角形的判定定理證明等腰三角形的定理,進(jìn)一步感受證明過程;
(3)熟悉證明的基本步驟和書寫格式. 2.過程與方法
2.通過誘導(dǎo)、啟發(fā)學(xué)生利用全等三角形證明等腰三角形的定理.發(fā)展學(xué)生的初步演繹邏輯推理的能力,鼓勵學(xué)生在交流探索中發(fā)現(xiàn)證明的多樣性,提高邏輯思維水平.
3.情感態(tài)度及價值觀
使學(xué)生滲透數(shù)學(xué)思想,培養(yǎng)學(xué)生合作交流的意識,同時使學(xué)生通過獨立思考去考慮問題的能力加強,培養(yǎng)良好的學(xué)習(xí)習(xí)慣.
二、教學(xué)重點、難點
重點:探索證明等腰三角形的性質(zhì)定理的思路與方法,掌握證明的基本要求和方法.
難點:通過探索利用全等三角形的判定與定義證明等腰三角形的性質(zhì)定理,明確推理證明的基本要求.
三、教具準(zhǔn)備
(兩個等腰三角形、彩色粉筆、教案、尺子)
四、教學(xué)過程
1.復(fù)習(xí)舊知,引入新知
(1)請同學(xué)們回憶判定三角形全等的公理有哪些? ? 公理:三邊對應(yīng)相等的兩個三角形全等(SSS). ? 公理:兩邊及其夾角對應(yīng)相等的兩個三角形全等(SAS). ? 公理:兩角及其夾邊對應(yīng)相等的兩個三角形全等(ASA)
(2)推論呢?
兩角分別相等且其中一組等角的對邊相等的兩個三角形全等(AAS).
(3)根據(jù)全等三角形的定義,我們可以得到 定理:全等三角形的對應(yīng)邊相等、對應(yīng)角相等.
學(xué)生討論:等腰三角形有哪些性質(zhì)嗎? 根據(jù)等腰三角形的性質(zhì)給予證明.
設(shè)計意圖:為學(xué)生對本節(jié)課證明等腰三角形的定理作鋪墊. 2.新授課
猜想:如果一個三角形是等腰三角形,那么這個三角形的兩個底角有什么關(guān)系呢?如何證明呢?
(1) 畫出圖形;
(2) 根據(jù)圖形寫出已知求證;
(3) 寫出推理過程.
已知:如圖1-1,在△ABC中,AB=AC. 求證:∠B=∠C.
分析:(折疊法)要證明兩底角相等,將等腰三角形對折,折痕將等腰三角形分成了兩個全等三角形,可作一條輔助線(注意輔助線要畫成虛線).
設(shè)計意圖:鍛煉學(xué)生的動手操作能力.
證明:如圖1-2,取BC的`中點D,連接AD.
。ㄒ阎?AB?AC ?在△BAD和△CAD中,?BD?CD (已作),
?AD?AD (公共邊),?∴ △BAD ≌ △CAD (SSS).
∴ ∠B=∠C (全等三角形的對應(yīng)角相等). 你還有其他證明方法嗎?與同伴交流.
作出底邊上的高或作出頂角的平分線,大家可以自己證明.
3、鞏固練習(xí)
在 △ ABC中,AB=AC.
(1)若∠ A=40°, 則∠ C 等于多少度?
。2)若∠B= 72°,則∠ A 等于多少度?
設(shè)計意圖:加強學(xué)生對等腰三角形定理的認(rèn)識.
4.引出推論
在圖1-2 中,觀察AD還具有怎樣的性質(zhì)?為什么?由此能得到什么結(jié)論? 我們作出了底邊上的中線,已證明△BAD ≌ △CAD.
所以∠BAD=∠CAD(全等三角形對應(yīng)角相等),即AD也是頂角的平分線,∠ADB=∠ADC(全等三角形對應(yīng)角相等).因為∠BDC=180°(平角的定義),所以∠ADB=90°,即AD也是底邊上的高線.
由此我們得到以下推論:等腰三角形頂角的角平分線、底邊上的中線及底邊上的高線互相重合.(簡稱“三線合一”)
5、隨堂練習(xí)
。1)如圖1-3,在△ABC中,AB=AC,且AD⊥BC,已知BD=2 cm,則DC=___cm, BC=___cm.
。2)如圖1-4,在△ABD中,AC⊥BD,垂足為C,AC=BC=BD. ①求證:△ABD是等腰三角形. ②求∠BAD的度數(shù).
圖1-4
6.課堂小結(jié)
等腰三角形的性質(zhì)定理:
等腰三角形的兩個底角相等(簡寫成“等邊對等角”). 等腰三角形頂角的平分線平分底邊并且垂直于底邊.
等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合.簡稱“三線合一”.
7.教學(xué)反思
數(shù)學(xué)教案:等腰三角形的判定 12
一、教學(xué)目的
使學(xué)生掌握等腰三角形性質(zhì)定理(包括推論)及其證明、
二、教學(xué)重點、難點
重點:等腰三角形的性質(zhì)、
難點:文字命題的證明、
三、教學(xué)過程
復(fù)習(xí)提問
什么叫做等腰三角形?什么是等腰三角形的腰、底邊、頂點和底角?
引入新課
教師演示事先備好的等腰三角形紙片對折,使兩腰疊在一起,發(fā)現(xiàn)它的兩底角重合,從而得到等腰三角形兩底角相等的命題,當(dāng)然此命題的真實性還需推理論證、
新課
1、等腰三角形的性質(zhì)定理等腰三角形的兩底角相等(簡寫成“等邊對等角”)、
讓學(xué)生回憶前面學(xué)過的文字命題證明的全過程、引導(dǎo)學(xué)生寫出已知、求證,并且都要結(jié)合圖形使之具體化、
2、推論1等腰三角形頂角平分線平分底邊且垂直于底邊、
從性質(zhì)定理的證明過程可以知道(如圖1)BD=DC,∠ADB=∠ADC,所以AD平分BC,且AD⊥BC,即得推論、
從推論1可以知道,等腰三角形的`頂角平分線、底邊上的中線、底邊上的高互相重合、
推論2等邊三角形的各角都相等,并且每一個角都等于60°、
3、等腰三角形性質(zhì)的應(yīng)用、等腰三角形的性質(zhì)有著重要的應(yīng)用,一般說,利用“等腰三角形兩底角相等”的性質(zhì)證明兩角相等;利用“等腰三角形底邊上的三條主要線段重合”的性質(zhì),來證明兩條線段相等、兩個角相等及兩條直線互相垂直;利用“等邊三角形各角相等,并且每一個角都等于60°”的性質(zhì),來證明一個角是60°,或作圖中通過作等邊三角形,作出一個60°的角、
例1已知:如圖2,房屋的頂角∠BAC=100°,過屋頂A的立柱AD⊥BC、屋椽AB=AC、求頂架上∠B、∠C、∠BAD、∠CAD的度數(shù)、
這是一道幾何計算題,要使學(xué)生熟悉解計算題的步驟,引導(dǎo)學(xué)生寫出解題過程、
小結(jié)
1、敘述等腰三角形的性質(zhì)(本堂所講定理及推論)及其應(yīng)用、
2、等腰三角形頂角與底角之間的常用關(guān)系式:在△ABC中,AB=AC,則
(1)∠A=180°-2∠B=180°-2∠C;
3、已知等腰三角形一個角的度數(shù),求其它兩個角的度數(shù):(1)若已知角是鈍角或直角,則此角一定為頂角,于是由2中(2)可求出兩底角;(2)若已知角是銳角,則此角可能是頂角,也可能是底角、若為前者,可按2中(2)求出兩底角、若為后者,則可按2中(1)求出頂角、
練習(xí):略
作業(yè):略
四、教學(xué)注意問題
1、等腰三角形的性質(zhì)在今后解(證)幾何題中有著重要的應(yīng)用,務(wù)必引起學(xué)生重視、且應(yīng)反復(fù)練習(xí)、
2、幾何計算題的一般解題步驟、
【數(shù)學(xué)教案:等腰三角形的判定】相關(guān)文章:
等腰三角形的判定教學(xué)反思范文10-06
數(shù)學(xué)教案-切線的判定和性質(zhì)09-29