- 相關(guān)推薦
初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計(精選10篇)
作為一位杰出的老師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編為大家整理的初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計,歡迎閱讀,希望大家能夠喜歡。
初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計 1
教材分析:
本節(jié)內(nèi)容出自九年級數(shù)學(xué)上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運算法則和進(jìn)一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學(xué)生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學(xué)解決實際問題的意識和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。
學(xué)生分析:
本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學(xué)生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學(xué)生具有較扎實的知識和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識性評價教學(xué)策略,給予個別關(guān)照、心理暗示以及適當(dāng)?shù)木窦睿朔员靶睦,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。
設(shè)計理念:
新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的.自主性、探究性、合作性學(xué)習(xí)活動的設(shè)計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進(jìn)行評價。從而營造一個接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。
教學(xué)目標(biāo)知識與技能目標(biāo):
會化簡二次根式,了解同類二次根式的概念,會進(jìn)行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。
過程與方法目標(biāo):
通過類比整式加減法運算體驗二次根式加減法運算的過程;學(xué)生經(jīng)歷由實際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。
情感態(tài)度與價值觀:
通過對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗到成功的樂趣.
重點、難點:重點:
合并被開放數(shù)相同的同類二次根式,會進(jìn)行簡單的二次根式的加減法。
難點:
二次根式加減法的實際應(yīng)用。
關(guān)鍵問題 :
了解同類二次根式的概念,合并同類二次根式,會進(jìn)行二次根式的加減法。
教學(xué)方法:.
1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵學(xué)生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。
2. 類比法:由實際問題導(dǎo)入二次根式加減運算;類比合并同類項合并同類二次根式。
3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對個別問題進(jìn)行點撥指導(dǎo),實現(xiàn)全優(yōu)的教育效果。
初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計 2
教學(xué)目的
1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;
2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。
教學(xué)重點
最簡二次根式的定義。
教學(xué)難點
一個二次根式化成最簡二次根式的方法。
教學(xué)過程
一、復(fù)習(xí)引入
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
二、講解新課
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
4.總結(jié)
把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的.基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
三、鞏固練習(xí)
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
四、小結(jié)
本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項式時要進(jìn)行因式分解,被開方數(shù)為兩個分?jǐn)?shù)的和則要先通分,再化簡。
五、布置作業(yè)
下列各式化成最簡二次根式:
初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計 3
【 學(xué)習(xí)目標(biāo) 】
1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。
2、過程與方法:進(jìn)一步體會分類討論的數(shù)學(xué)思想。
3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。
【 學(xué)習(xí)重難點 】
1、重點:準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計算。
2、難點:準(zhǔn)確理解二次根式的雙重非負(fù)性。
【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁
【 學(xué)習(xí)流程 】
一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)
學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。
二、 課堂教學(xué)
(一)合作學(xué)習(xí)階段。
教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的`問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時的引導(dǎo)、點撥,對普遍存在的問題做好記錄。
(二)集體講授階段。(15分鐘左右)
1. 各小組推選代表依次對課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補充。
2. 教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。
3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。
(三)當(dāng)堂檢測階段
為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。
(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)
三、 課后作業(yè)(課后作業(yè)見附件2)
教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。
四、板書設(shè)計
課題:二次根式(1)
二次根式概念 例題 例題
二次根式性質(zhì)
初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計 4
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1.使學(xué)生了解最簡二次根式的概念和同類二次根式的概念.
2.能判斷二次根式中的同類二次根式.
3.會用同類二次根式進(jìn)行二次根式的加減.
。ǘ┠芰τ(xùn)練點
通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生的思維能力并提高學(xué)生的運算能力.
。ㄈ┑掠凉B透點
從簡單的同類二次根式的合并,層層深入,從解題的過程中,讓學(xué)生體會轉(zhuǎn)化的思維,滲透辯證唯物主義思想.
。ㄋ模┟烙凉B透點
通過二次根式的加減,滲透二次根式化簡合并后的形式簡單美.
二、學(xué)法引導(dǎo)
1.教師教法引導(dǎo)法、比較法、剖析法,在比較和剖析中,不斷糾正錯誤,從而樹立牢固的計算方法.
2.學(xué)生學(xué)法通過不斷的練習(xí),從中體會、比較、二次根式加減法中,正確的方法使用,并注重小結(jié)出二次根式加減法的法則.
三、重點·難點·疑點及解決辦法
1.教學(xué)重點二次根式的加減法運算.
2.教學(xué)難點二次根式的化簡.
3.疑點及解決辦法二次根式的加減法的關(guān)鍵在于二次根式的化簡,在適當(dāng)復(fù)習(xí)二次根的化簡后進(jìn)行一步引入幾個整式加減法的,以引起學(xué)生的求知欲與興趣,從而最后引入同類二次根式的加減法,可進(jìn)行階梯式教學(xué),由淺到深、由簡單到復(fù)雜的教學(xué)方法,以利于學(xué)生的理解、掌握和運用,通過具體例題的計算,可由教師引導(dǎo),由學(xué)生總結(jié)出計算的步驟和注意的問題,還可以通過反例,讓學(xué)生去偽存真,這種比較法的教學(xué)可使學(xué)生對概念的理解、法則的運用更加準(zhǔn)確和熟練,并能提高學(xué)生的學(xué)習(xí)興趣,以達(dá)到更好的學(xué)習(xí)效果.
四、課時安排
2課時
五、教具學(xué)具準(zhǔn)備
投影片
六、師生互動活動設(shè)計
1.復(fù)習(xí)最簡二根式整式及的加減運算,引入二次根式的加減運算,盡量讓學(xué)生回答問題.
2.教師通過例題的示范讓學(xué)生了解什么是二次根式的加減法,并引入同類的.二次根式的定義.
3.再通過較復(fù)雜的二次根式的加減法計算,引導(dǎo)學(xué)生小結(jié)歸納出二次根式的加減法的法則.
4.通過學(xué)生的反復(fù)訓(xùn)練,發(fā)現(xiàn)問題及時糾正,并引導(dǎo)學(xué)生從解題過程中體會理解二次根式加減法的實質(zhì)及解決的方法.
七、教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo)
學(xué)習(xí)二次根式化簡的目的是為了能將一些最終能化為同類二次根式項相合并,從而達(dá)到化繁為簡的目的,本節(jié)課就是研究二次根式的加減法.
。ǘ┱w感知
同類二次根式的概念應(yīng)分二層含義去理解(1)化簡后(2)被開方數(shù)還相同.通過正確理解二次根式加減法的法則來準(zhǔn)確地實施二次根式加減法的運算,應(yīng)特別注意合并同類二次根式時僅將它們的系數(shù)相加減,根式一定要保持不變,并可對比整式的加減法則以增加對合并同類二次根式的理解,增強(qiáng)綜合運算的能力.
初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計 5
一、教學(xué)目標(biāo)
1.理解分母有理化與除法的關(guān)系.
2.掌握二次根式的分母有理化.
3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運算能力.
4.通過學(xué)習(xí)分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想
二、教學(xué)設(shè)計
小結(jié)、歸納、提高
三、重點、難點解決辦法
1.教學(xué)重點:分母有理化.
2.教學(xué)難點:分母有理化的技巧.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
六、師生互動活動設(shè)計
復(fù)習(xí)小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主
七、教學(xué)過程
【復(fù)習(xí)提問】
二次根式混合運算的步驟、運算順序、互為有理化因式.
例1 說出下列算式的運算步驟和順序:
(1) (先乘除,后加減).
。2) (有括號,先去括號;不宜先進(jìn)行括號內(nèi)的運算).
。3)辨別有理化因式:
有理化因式: 與 , 與 , 與 …
不是有理化因式: 與 , 與 …
化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).
例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?
引入新課題.
【引入新課】
化簡式子 ,乘以什么樣的式子,分母中的`根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.
例2 把下列各式的分母有理化:
。1) ; (2);(3)
解:略.
注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.
初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計 6
目 標(biāo)
1. 熟練地運用二次根式的性質(zhì)化簡二次根式;
2. 會運用二次根式解決簡單的實際問題;
3. 進(jìn)一步體驗二次根式及其運算的實際意義和應(yīng)用價值。
教學(xué)設(shè)想
本節(jié)課的重點是:二次根式及其運算的實際應(yīng)用;難點是:例7涉及多方面的知識和綜合運用,思路比較復(fù)雜。
教 學(xué) 程序 與 策 略
一、預(yù)習(xí)檢測:
1.解決節(jié)前問題:
如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?
歸納:
在日常生活和生產(chǎn)實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。
二、合作交流:
1、:如圖,扶梯AB的坡比(BE與AE的'長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)
讓學(xué)生有充分的時間閱讀問題,并結(jié)合圖形分析問題:
。1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?
(2)列出的算式中有哪些運算?能化簡嗎?
注意解題格式
教 學(xué) 程 序 與 策 略
三、鞏固練習(xí):
完成課本P17、1,組長檢查反饋;
四、拓展提高:
1、如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。
。1)分別求出3張長方形紙條的長度。
。2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。
師生共同分析解題思路,請學(xué)生寫出解題過程。
五、課堂小結(jié):
1.談一談:本節(jié)課你有什么收獲?
2.運用二次根式解決簡單的實際問題時應(yīng)注意的的問題
六、堂堂清
1、作業(yè)本(2)
2、課本P17頁:第4、5題選做。
初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計 7
一、案例背景:
本節(jié)是九年級上學(xué)期數(shù)學(xué)的起始課。二次根式的學(xué)習(xí),是對代數(shù)式的進(jìn)一步學(xué)習(xí)。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對二次根式的理解。掌握求二次根式的值和二次根式根號內(nèi)字母的取值范圍。為以后的運用二次根式的運算解決實際問題打好基礎(chǔ)。
二、案例描述:
1、學(xué)習(xí)任務(wù)分析:
通過對數(shù)和平方根、算術(shù)平方根的復(fù)習(xí),鼓勵學(xué)生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實際問題的時候,注意轉(zhuǎn)化思想的滲透。體會分析問題、解決問題的方法,積累數(shù)學(xué)活動經(jīng)驗。比如求二次根式根號內(nèi)的字母的取值范圍,就是將問題轉(zhuǎn)化為不等式來解決。注意學(xué)生數(shù)學(xué)書寫格式的規(guī)范,為以后的學(xué)習(xí)打好基礎(chǔ)。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用復(fù)習(xí)以前學(xué)過的知識導(dǎo)入新課。設(shè)計合作學(xué)習(xí)活動,引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實際問題的過程,真正把學(xué)生放到主體位置。
2、學(xué)生的認(rèn)知起點分析:
學(xué)生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準(zhǔn)備。另外,學(xué)生對數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過程,引導(dǎo)學(xué)生對二次根式概念的理解。
案例反思:
1.下列代數(shù)式若能作為二次根式的被開方數(shù),則求出字母的取值范圍?若不能,則說明理由。1-2a-2a2-1(2+a)2-(a-5)2
以往對這類問題的回答都是全班回答,有些學(xué)生反面信息不能體現(xiàn)出來。采取的措施是全班舉手勢回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級能夠全面參與,避免集體回答所體現(xiàn)不出的問題。
2.合作活動:
第一位同學(xué)——出題者:請你按表中的要求寫完后,按順時針方向交給下一位同學(xué);
第二位同學(xué)——解題者:請你按表中的要求解完后,按順時針方向交給下一位同學(xué);
第三位同學(xué)——批改者:請你用藍(lán)筆批改,若有錯誤,請與解題者商議并請其訂正,完成交給你信任的同學(xué)用紅筆復(fù);
第四位同學(xué)——復(fù)查者:請你一定要把好關(guān)哦!
出題者姓名:
解題者姓名:
第一個二次根式:
1. 要使式子的值為實數(shù),求x的取值范圍.
2. 寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。
3. 寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
第二個二次根式:
1. 要使式子的值為實數(shù),求x的'取值范圍。
2. 寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。
3. 寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
批改者姓名:
復(fù)查者姓名:
《課程標(biāo)準(zhǔn)》突出了學(xué)生在學(xué)習(xí)中的地位 -- 學(xué)生是學(xué)習(xí)的主人,同時,教師的地位、角色發(fā)生了變化,從 “ 主導(dǎo) ” 變成了 “學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者和合作者 ”。合作活動的安排就是對這一課程標(biāo)準(zhǔn)的體現(xiàn)。
初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計 8
教學(xué)目標(biāo)
1、根據(jù)了解二次根式的概念:
2、知道被開方數(shù)必須是非負(fù)數(shù)的理由;
3、能運用二次根式的性質(zhì)解決實際問題
4新設(shè)計:我們知道,用字母表示數(shù),可以將字母和數(shù)一起運算。前面已經(jīng)學(xué)習(xí)了單項式、多項式和分式等概念和運算,可以發(fā)現(xiàn),式的運算本質(zhì)上就是對符號運用運算律所進(jìn)行的形式運算。本節(jié)課主要討論如何對數(shù)和字母開平方而得到的特殊式子——二次根式的加、減、乘、除運算。前面我們學(xué)習(xí)的平方根和算術(shù)平方根的概念和性質(zhì)是學(xué)習(xí)二次根式的基礎(chǔ),我們先來回憶一下平方根和算術(shù)平方根的有關(guān)知識。
5、新設(shè)計:問題1平方根的概念,算術(shù)平方根的概念,平方根的性質(zhì)。
6、學(xué)情分析:本班40名學(xué)生,成績參差不齊,程度差距很大,鑒于此,對于學(xué)生要分層教學(xué)。
7、重點難點:
1.重點:形如(a≥0)的式子叫做二次根式的概念;
2.難點:運用二次根式的性質(zhì)解決實際問題。
8、教學(xué)過程6.1第一學(xué)時教學(xué)活動
活動1【講授】二次根式
教學(xué)過程設(shè)計
創(chuàng)設(shè)情境,提出問題
引言
我們知道,用字母表示數(shù),可以將字母和數(shù)一起運算。前面已經(jīng)學(xué)習(xí)了單項式、多項式和分式等概念和運算,可以發(fā)現(xiàn),式的運算本質(zhì)上就是對符號運用運算律所進(jìn)行的形式運算。本節(jié)課主要討論如何對數(shù)和字母開平方而得到的特殊式子——二次根式的加、減、乘、除運算。前面我們學(xué)習(xí)的平方根和算術(shù)平方根的概念和性質(zhì)是學(xué)習(xí)二次根式的基礎(chǔ),我們先來回憶一下平方根和算術(shù)平方根的有關(guān)知識。
問題1平方根的概念,算術(shù)平方根的概念,平方根的性質(zhì)。
師生活動:給學(xué)生充分思考和討論時間,讓他們回憶有關(guān)平方根和算術(shù)平方根的有關(guān)知識,才能在此基礎(chǔ)上再進(jìn)一步研究二次根式概念。
設(shè)計意圖:回顧已學(xué)的數(shù)和式的運算,叢數(shù)和式運算的完整性角度提出要研究的問題,讓學(xué)生了解本章將要學(xué)習(xí)的主要內(nèi)容,起到先行組織者的作用。
問題2請思考下列問題
面積為3的正方形的邊長為,面積為S的正方形邊長為。
一個長方形圍欄,長是寬的2倍,面積為130㎡,則它的寬為m。
一個物體從高處自由落下,落在地面所用的時間t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系h=5t2。如果用含有h的式子表示t,則t為。
師生活動:學(xué)生思考并完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評價。關(guān)鍵是幫助學(xué)生實現(xiàn)從數(shù)的算術(shù)平方根到用含有字母的式子表示算術(shù)平方根的抽象。
設(shè)計意圖:為概括二次根式的概念提供具體例子,同時發(fā)展符號意識。
抽象概括,形成概念
問題3上面得到的式子有什么共同特征?
師生活動:教師引導(dǎo)學(xué)生概括得出共同特征,并給出二次根式的定義。
追問1中a的取值有要求嗎?為什么?
師生活動:教師引導(dǎo)學(xué)生討論,分析共同特點,歸納得到二次根式的概念,并強(qiáng)調(diào)“被開方數(shù)非負(fù)”。
追問2二次根式有什么樣的特點?
師生活動:給學(xué)生充分的思考和討論時間,讓學(xué)生總結(jié)二次根式的特點,教師歸納總結(jié)。
設(shè)計意圖:采用從具體到抽象的方式,通過歸納的出二次根式的概念。
辨析概念,應(yīng)用鞏固
例1下列各式是二次根式嗎?
師生活動:教師引導(dǎo)學(xué)生從二次根式的特征出發(fā)思考問題。
例2求下列二次根式中字母的取值范圍:
師生活動:教師可以通過問題“觀察各式被開方數(shù)是什么?你能根據(jù)二次根式的概念的帶答案嗎?”引導(dǎo)學(xué)生從概念出發(fā)思考問題。
追問:求二次根式中字母的取值范圍的基本依據(jù):
師生活動:給學(xué)生充分的思考和討論時間,讓學(xué)生總結(jié)回答,教師歸納總結(jié)。
問題4 x取何值時,下列二次根式有意義?
師生活動:學(xué)生搶答加分,調(diào)動學(xué)大亨的積極性。
設(shè)計意圖:讓學(xué)生獨立思考,再追問。
問題5計算
師生活動:通過簡單計算讓學(xué)生總結(jié)規(guī)律。
例3計算
師生活動:學(xué)生直接回答。
設(shè)計意圖:通過加分制調(diào)動學(xué)生的積極性,提高學(xué)生的注意力,通過練習(xí)鞏固知識點。
問題7計算
師生活動:通過簡單計算讓學(xué)生總結(jié)規(guī)律。
追問:
師生活動:學(xué)生討論回答,教師歸納總結(jié)。
設(shè)計意圖:通過簡單計算學(xué)生自己歸納總結(jié)二次根式的性質(zhì),加深學(xué)生的印象。
綜合應(yīng)用,深化提高
練習(xí)1學(xué)生完成教科書第3頁的練習(xí)。
練習(xí)2若1<x<4,則化簡
設(shè)計意圖:辨別二次根式的概念,確定二次根式有意的`條件。利用二次根式的性質(zhì)解題。
小結(jié)
教師與學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答下列問題:
什么叫二次根式?二次根式有意義的條件是什么?二次根式的值的范圍是什么?
二次根式與算術(shù)平方根有什么聯(lián)系與區(qū)別?
我們以前學(xué)過整式、分式都能像數(shù)一樣進(jìn)行運算,你認(rèn)為對于二次根式應(yīng)該進(jìn)一步研究哪些問題?
設(shè)計意圖:共同回顧本節(jié)課學(xué)習(xí)的概念,再次練習(xí)算術(shù)平方根理解二次根式的概念,提出二次根式應(yīng)該研究的問題。
布置作業(yè)
教科書習(xí)題16.1第1、2題。
教學(xué)反思:
1.在實際授課中,通過以下步驟讓學(xué)生認(rèn)識、理解、并掌握本節(jié)知識:
(1)讓學(xué)生回顧了算術(shù)平方根與平方根的概念,并且通過一個思考欄目的兩道題,得出二次根式的定義后又復(fù)習(xí)了算術(shù)平方根具有雙重非負(fù)性;
。2)通過練習(xí)掌握如何判斷一個式子是否是二次根式的條件,并經(jīng)過例1掌握二次根式在實數(shù)范圍內(nèi)有意義的條件;
(3)通過練習(xí)讓學(xué)生得出二次根式的兩個性質(zhì),體會從特殊到一般的思維過程,進(jìn)而掌握公式的一般推導(dǎo)方法;本節(jié)課大部分時間都是引導(dǎo)學(xué)生邊學(xué)邊做,讓學(xué)生經(jīng)歷了整個學(xué)習(xí)過程。
2.在學(xué)習(xí)過程中,突出了引導(dǎo)學(xué)生自己得出結(jié)論,特別是二次根式的兩個性質(zhì),在做完思考題之后,學(xué)生自己就初步得出了結(jié)論,而且通過其他學(xué)生的補充越來越完善。
3.讓學(xué)生自己找出性質(zhì)1和性質(zhì)2的區(qū)別與聯(lián)系,雖然不夠系統(tǒng)和完整,但通過這樣的訓(xùn)練,培養(yǎng)了學(xué)生總結(jié)規(guī)律的能力。
4.在實際教學(xué)中,仍然存在著對課堂時間把握不精確的問題,出現(xiàn)了前松后緊的現(xiàn)象,以致有深度的練習(xí)沒時間完成,結(jié)束的也比較倉促。在今后教學(xué)中,應(yīng)注意時間的掌控。
5.在引導(dǎo)學(xué)生探索求知和互動學(xué)習(xí)方面還有欠缺。新的教學(xué)理念要求教師在課堂教學(xué)中注意引導(dǎo)學(xué)生探究學(xué)習(xí),在我的課堂教學(xué)中,對學(xué)生探索求知進(jìn)行了引導(dǎo),并且鼓勵大家自己得出結(jié)論,但在互動方面做的還不夠,大部分學(xué)生都是獨立思考,很少與同學(xué)合作交流,今后的教學(xué)中應(yīng)多培養(yǎng)學(xué)生合作交流的意識,這樣有助于他們今后的生活和學(xué)習(xí)。
初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計 9
教學(xué)目的:
1、在二次根式的混合運算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡和計算二次根式;
2、會求二次根式的代數(shù)的值;
3、進(jìn)一步提高學(xué)生的綜合運算能力。
教學(xué)重點:
在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式
教學(xué)難點:
正確進(jìn)行二次根式的混合運算和求含有二次根式的代數(shù)式的值
教學(xué)過程:
一、二次根式的混合運算
例1 計算:
分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運算。
(2)題是含乘方、加、減和除法的混合運算,應(yīng)按運算的順序進(jìn)行計算,先算括號內(nèi)的式子,最后進(jìn)行除法運算。注意的計算。
練習(xí)1:P206 / 8--① P207 / 1①②
例2 計算
問:計算思路是什么?
答:先把第一人的.括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進(jìn)行計算。
二、求代數(shù)式的值。 注意兩點:
(1)如果已知條件為含二次根式的式子,先把它化簡;
(2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。
例3 已知,求的值。
分析:多項式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母。可使計算簡便。
例4 已知,求的值。
觀察代數(shù)式的特點,請說出求這個代數(shù)式的值的思路。
答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進(jìn)行]通分,把這個代數(shù)式化簡后,再求值。
三、小結(jié)
1、對于二次根式的混合混合運算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運算的順序進(jìn)行,即先進(jìn)行乘方運算,再進(jìn)行乘、除運算,最后進(jìn)行加、減運算。如果有括號,先進(jìn)行括號內(nèi)的式子的運算,運算結(jié)果要化為最簡二次根式。
2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。
3、在進(jìn)行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。
四、作業(yè)
P206 / 7 P206 / 8---②③
初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計 10
【教學(xué)目標(biāo)】
1.運用法則
進(jìn)行二次根式的乘除運算;
2.會用公式
化簡二次根式。
【教學(xué)重點】
運用
進(jìn)行化簡或計算
【教學(xué)難點】
經(jīng)歷二次根式的乘除法則的探究過程
【教學(xué)過程】
一、情境創(chuàng)設(shè):
1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過二次根式的哪些性質(zhì)?
2.計算:
二、探索活動:
1.學(xué)生計算;
2.觀察上式及其運算結(jié)果,看看其中有什么規(guī)律?
3.概括:
得出:二次根式相乘,實際上就是把被開方數(shù)相乘,而根號不變。
將上面的公式逆向運用可得:
積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。
三、例題講解:
1.計算:
2.化簡:
小結(jié):如何化簡二次根式?
1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;
2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的`因數(shù)或因式。
四、課堂練習(xí):
(一).P62 練習(xí)1、2
其中2中(5)
注意:
不是積的形式,要因數(shù)分解為36×16=242.
(二).P67 3 計算 (2)(4)
補充練習(xí):
1.(x>0,y>0)
2.拓展與提高:
化簡:
1).(a>0,b>0)
2).(y
2.若,求m的取值范圍。
3.已知:,求的值。
五、本課小結(jié)與作業(yè):
小結(jié):二次根式的乘法法則
作業(yè):
1).課課練P9-10
2).補充習(xí)題
【初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計】相關(guān)文章:
數(shù)學(xué)二次根式教案02-15
二次根式教案02-15
二次根式教學(xué)反思04-07
二次根式教案15篇02-27
二次根式的運算教學(xué)反思10-23
關(guān)注二次根式新題型12-10
二次根式教案匯編5篇04-10
《二次根式復(fù)習(xí)課》教學(xué)反思12-05
二次根式教案模板五篇04-05
【推薦】二次根式教案三篇04-05