中文国产日韩欧美视频,午夜精品999,色综合天天综合网国产成人网,色综合视频一区二区观看,国产高清在线精品,伊人色播,色综合久久天天综合观看

初中數(shù)學(xué)教案

時(shí)間:2024-07-15 22:29:57 秀雯 初中數(shù)學(xué)教案 我要投稿

初中數(shù)學(xué)教案(通用15篇)

  作為一位無(wú)私奉獻(xiàn)的人民教師,往往需要進(jìn)行教案編寫(xiě)工作,借助教案可以更好地組織教學(xué)活動(dòng)。那么優(yōu)秀的教案是什么樣的呢?以下是小編為大家整理的初中數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

初中數(shù)學(xué)教案(通用15篇)

  初中數(shù)學(xué)教案 1

  教學(xué)目標(biāo):

  1、進(jìn)一步理解函數(shù)的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出函數(shù)關(guān)系,列出函數(shù)解析式;

  2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍;

  3、會(huì)求函數(shù)值,并體會(huì)自變量與函數(shù)值間的對(duì)應(yīng)關(guān)系;

  4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法;

  5、通過(guò)函數(shù)的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的,是有規(guī)律地運(yùn)動(dòng)變化著的;

  教學(xué)重點(diǎn):

  了解函數(shù)的意義,會(huì)求自變量的取值范圍及求函數(shù)值。

  教學(xué)難點(diǎn):

  函數(shù)概念的抽象性

  教學(xué)過(guò)程:

  (一)引入新課:

  上一節(jié)課我們講了函數(shù)的概念:一般地,設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。

  生活中有很多實(shí)例反映了函數(shù)關(guān)系,你能舉出一個(gè),并指出式中的自變量與函數(shù)嗎?

  1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系。

  2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買100元的小禮物送給同學(xué),求所能購(gòu)買的總數(shù)n(個(gè))與單價(jià)(a)元的'關(guān)系。

  解:1、y=30n

  y是函數(shù),n是自變量

  2、n是函數(shù),a是自變量

  (二)講授新課

  剛才所舉例子中的函數(shù),都是利用數(shù)學(xué)式子即解析式表示的,這種用數(shù)學(xué)式子表示函數(shù)時(shí),要考慮自變量的取值必須使解析式有意義,如第一題中的學(xué)生數(shù)n必須是正整數(shù)。

  例1、求下列函數(shù)中自變量x的取值范圍。

 。1)(2)

 。3)(4)

  (5)(6)

  分析:在(1)、(2)中,x取任意實(shí)數(shù),與都有意義

  (3)小題的是一個(gè)分式,分式成立的條件是分母不為0,這道題的分母是,因此要求。

  同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且。

  第(5)小題,是二次根式,二次根式成立的條件是被開(kāi)方數(shù)大于、等于零,的被開(kāi)方數(shù)是。

  同理,第(6)小題也是二次根式,是被開(kāi)方數(shù),

  小結(jié):從上面的例題中可以看出函數(shù)的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);函數(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開(kāi)方數(shù)大于、等于零。

  注意:有些同學(xué)沒(méi)有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可。教師可將解題步驟設(shè)計(jì)得細(xì)致一些。先提問(wèn)本題的分母是什么?然后再要求分式的分母不為零。求出使函數(shù)成立的自變量的取值范圍。二次根式的問(wèn)題也與次類似。

  但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫(xiě)成或。在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過(guò)來(lái)用。限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”。說(shuō)明這里與是并且的關(guān)系。即2與-1這兩個(gè)值x都不能取。

  例2、自行車保管站在某個(gè)星期日保管的自行車共有3500輛次,其中變速車保管費(fèi)是每輛一次0.5元,一般車保管費(fèi)是每次一輛0.3元。

  (1)若設(shè)一般車停放的輛次數(shù)為x,總的保管費(fèi)收入為y元,試寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;

 。2)若估計(jì)前來(lái)停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個(gè)星期日收入保管費(fèi)總數(shù)的范圍。

  解:(1)

  (x是正整數(shù),

 。2)若變速車的輛次不小于25%,但不大于40%,

  則收入在1225元至1330元之間

  總結(jié):對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,應(yīng)使得實(shí)際問(wèn)題有意義,這樣,就要求聯(lián)系實(shí)際,具體問(wèn)題具體分析。

  對(duì)于函數(shù),當(dāng)自變量時(shí),相應(yīng)的函數(shù)y的值是。60叫做這個(gè)函數(shù)當(dāng)時(shí)的函數(shù)值。

  例3、求下列函數(shù)當(dāng)時(shí)的函數(shù)值:

  (1)————(2)—————

 。3)————(4)——————

  注:本例既鍛煉了學(xué)生的計(jì)算能力,又創(chuàng)設(shè)了情境,讓學(xué)生體會(huì)對(duì)于x的每一個(gè)值,y都有唯一確定的值與之對(duì)應(yīng)。以此加深對(duì)函數(shù)的理解。

 。ǘ┬〗Y(jié):

  這節(jié)課,我們進(jìn)一步地研究了有關(guān)函數(shù)的概念。在研究函數(shù)關(guān)系時(shí)首先要考慮自變量的取值范圍。因此,要求大家能掌握解析式含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應(yīng)的函數(shù)值。另外,對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,要具體問(wèn)題具體分析。

  作業(yè):習(xí)題13.2A組2、3、5

  今天的內(nèi)容就介紹到這里了。

  初中數(shù)學(xué)教案 2

  一、內(nèi)容和內(nèi)容解析

 。ㄒ唬﹥(nèi)容

  概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡(jiǎn)單不等式的解集。

 。ǘ﹥(nèi)容解析

  現(xiàn)實(shí)生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系。本節(jié)課從生活實(shí)際出發(fā)導(dǎo)入常見(jiàn)行程問(wèn)題的不等關(guān)系,使學(xué)生充分認(rèn)識(shí)到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望。再通過(guò)對(duì)實(shí)例的進(jìn)一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個(gè)概念。前面學(xué)過(guò)方程、方程的解、解方程的概念。通過(guò)類比教學(xué)、不等式、不等式的解、解不等式幾個(gè)概念不難理解。但是對(duì)于初學(xué)者而言,不等式的解集的理解就有一定的難度。因此教材又進(jìn)行數(shù)形結(jié)合,用數(shù)軸來(lái)表示不等式的解集,這樣直觀形象的表示不等式的解集,對(duì)理解不等式的解集有很大的幫助。基于以上分析,可以確定本節(jié)課的教學(xué)重點(diǎn)是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上。

  二、目標(biāo)和目標(biāo)解析

  (一)教學(xué)目標(biāo)

  1.理解不等式的概念

  2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系

  3.了解解不等式的概念

  4.用數(shù)軸來(lái)表示簡(jiǎn)單不等式的解集

 。ǘ┠繕(biāo)解析

  1.達(dá)成目標(biāo)1的標(biāo)志是:能正確區(qū)別不等式、等式以及代數(shù)式

  2.達(dá)成目標(biāo)2的標(biāo)志是:能理解不等式的解是解集中的某一個(gè)元素,而解集是所有解組成的一個(gè)集合

  3.達(dá)成目標(biāo)3的標(biāo)志是:理解解不等式是求不等式解集的一個(gè)過(guò)程

  4、達(dá)成目標(biāo)4的標(biāo)志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個(gè)重要體現(xiàn),也是學(xué)習(xí)不等式的一種重要工具操作時(shí),要掌握好“兩定”:一是定界點(diǎn),一般在數(shù)軸上只標(biāo)出原點(diǎn)和界點(diǎn)即可,邊界點(diǎn)含于解集中用實(shí)心圓點(diǎn),或者用空心圓點(diǎn);二是定方向,小于向左,大于向右

  三、教學(xué)問(wèn)題診斷分析

  本節(jié)課實(shí)質(zhì)是一節(jié)概念課,對(duì)于不等式、不等式的解以及解不等式可通過(guò)類比方程、方程的.解、解方程類比教學(xué),學(xué)生不難理解,但是對(duì)不等式的解集的理解就有一定的難度

  因此,本節(jié)課的教學(xué)難點(diǎn)是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集

  四、教學(xué)支持條件分析

  利用多媒體直觀演示課前引入問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)興趣

  五、教學(xué)過(guò)程設(shè)計(jì)

 。ㄒ唬﹦(dòng)畫(huà)演示情景激趣多媒體演示:兩個(gè)體重相同的孩子正在蹺蹺板上做游戲,現(xiàn)在換了一個(gè)大人上去,蹺蹺板發(fā)生了傾斜,游戲無(wú)法繼續(xù)進(jìn)行下去了,這是什么原因呢?設(shè)計(jì)意圖:通過(guò)實(shí)例創(chuàng)設(shè)情境,從“等”過(guò)渡到“不等”,培養(yǎng)學(xué)生的觀察能力,分析能力,激發(fā)他們的學(xué)習(xí)興趣

  (二)立足實(shí)際引出新知

  問(wèn)題一輛勻速行駛的汽車在11︰20距離a地50km,要在12︰00之前駛過(guò)a地,車速應(yīng)滿足什么條件?

  小組討論,合作交流,然后小組反饋交流結(jié)果,最后,老師將小組反饋意見(jiàn)進(jìn)行整理(學(xué)生沒(méi)有討論出來(lái)的思路老師進(jìn)行補(bǔ)充)

  1.從時(shí)間方面慮:

  2.從行程方面:<>50 3,從速度方面考慮:x>50÷

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生合作、交流的意識(shí)習(xí)慣,使他們積極參與問(wèn)題的討論,并敢于發(fā)表自己的見(jiàn)解,老師對(duì)問(wèn)題解決方法的梳理與補(bǔ)充,發(fā)散學(xué)生思維,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力

 。ㄈ┚o扣問(wèn)題概念辨析

  1.不等式

  設(shè)問(wèn)1:什么是不等式?

  設(shè)問(wèn)2:能否舉例說(shuō)明?由學(xué)生自學(xué),老師可作適當(dāng)補(bǔ)充,比如:是不等式

  2.不等式的解

  設(shè)問(wèn)1:什么是不等式的解?設(shè)問(wèn)

  2:不等式的解是唯一的嗎?由學(xué)生自學(xué)再討論

  老師點(diǎn)撥:由x>50÷得x>75說(shuō)明x任意取一個(gè)大于75的數(shù)都是不等式

  3.不等式的解集

  設(shè)問(wèn)1:什么是不等式的解集?<,>50的解,<,>50,x>50÷都設(shè)問(wèn)

  2:不等式的解集與不等式的解有什么區(qū)別與聯(lián)系?由學(xué)生自學(xué)后再小組合作交流

  老師點(diǎn)撥:不等式的解是不等式解集中的一個(gè)元素,而不等式的解集是不等式所有解組成的一個(gè)集合

  4.解不等式

  設(shè)問(wèn)1:什么是解不等式?由學(xué)生回答

  老師強(qiáng)調(diào):解不等式是一個(gè)過(guò)程

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生的自學(xué)能力,進(jìn)一步培養(yǎng)學(xué)生合作交流的意識(shí),遵循學(xué)生的認(rèn)知規(guī)律,有意識(shí)、有計(jì)劃、有條理地設(shè)計(jì)一些問(wèn)題,可以讓學(xué)生始終處于積極的思維狀態(tài),不知不覺(jué)中接受了新知識(shí),老師再適當(dāng)點(diǎn)撥,加深理解

 。ㄋ模⿺(shù)形結(jié)合,深化認(rèn)識(shí)

  問(wèn)題1:由上可知,x>75既是不等式的解集,那么在數(shù)軸上如何表示x>75呢?問(wèn)題

  2:如果在數(shù)軸上表示x≤ 75,又如何表示呢?由老師講解,注意規(guī)范性,準(zhǔn)確性老師適當(dāng)補(bǔ)充:“≥”與“≤”的意義,并強(qiáng)調(diào)用“≥”或“≤”連接的式子也是不等式,比如x≤ 75就是不等式

  設(shè)計(jì)意圖:通過(guò)數(shù)軸的直觀讓學(xué)生對(duì)不等式的解集進(jìn)一步加深理解,滲透數(shù)形結(jié)合思想

 。ㄎ澹w納小結(jié),反思

  提高教師與學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請(qǐng)學(xué)生回答如下問(wèn)題

  1、什么是不等式?

  <的解集,也是不等式>50

  2、什么是不等式的解?

  3、什么是不等式的解集,它與不等式的解有什么區(qū)別與聯(lián)系?

  4、用數(shù)軸表示不等式的解集要注意哪些方面?

  設(shè)計(jì)意圖:歸納本節(jié)課的主要內(nèi)容,交流心得,不斷積累學(xué)習(xí)經(jīng)驗(yàn)

 。┎贾米鳂I(yè),課外反饋

  教科書(shū)第119頁(yè)第1題,第120頁(yè)第2,3題

  設(shè)計(jì)意圖:通過(guò)課后作業(yè),教師及時(shí)了解學(xué)生對(duì)本節(jié)課知識(shí)的掌握情況,以便對(duì)教學(xué)進(jìn)度和方法進(jìn)行適當(dāng)?shù)恼{(diào)整

  六、目標(biāo)檢測(cè)設(shè)計(jì)

  1.填空

  下列式子中屬于不等式的有___________________________

 、賦 +7>

 、趚≥ y + 2 = 0

 、 5x + 7

  設(shè)計(jì)意圖:讓學(xué)生正確區(qū)分不等式、等式與代數(shù)式,進(jìn)一步鞏固不等式的概念

  2.用不等式表示

  ① a與5的和小于7

 、 a的與b的3倍的和是非負(fù)數(shù)

 、壅叫蔚倪呴L(zhǎng)為xcm,它的周長(zhǎng)不超過(guò)160cm,求x滿足的條件

  設(shè)計(jì)意圖:培養(yǎng)學(xué)生審題能力,既要正確抓住題目中的關(guān)鍵詞,如“大于(小于)、非負(fù)數(shù)(正數(shù)或負(fù)數(shù))、不超過(guò)(不低于)”等等,正確選擇不等號(hào),又要注意實(shí)際問(wèn)題中的數(shù)量的實(shí)際意義。

  初中數(shù)學(xué)教案 3

  知識(shí)技能目標(biāo)

  1、理解反比例函數(shù)的圖象是雙曲線,利用描點(diǎn)法畫(huà)出反比例函數(shù)的圖象,說(shuō)出它的性質(zhì);

  2、利用反比例函數(shù)的圖象解決有關(guān)問(wèn)題。

  過(guò)程性目標(biāo)

  1、經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過(guò)程,會(huì)說(shuō)出它的性質(zhì);

  2、探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問(wèn)題。

  教學(xué)過(guò)程

  一、創(chuàng)設(shè)情境

  上節(jié)的練習(xí)中,我們畫(huà)出了問(wèn)題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來(lái)討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。

  二、探究歸納

  1、畫(huà)出函數(shù)的圖象。

  分析畫(huà)出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x≠0。

  解

  1、列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:

  2、描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(—6,—1)、(—3,—2)、(—2,—3)等。

  3、連線:用平滑的曲線將第一象限各點(diǎn)依次連起來(lái),得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來(lái),得到圖象的另一個(gè)分支。這兩個(gè)分支合起來(lái),就是反比例函數(shù)的圖象。

  上述圖象,通常稱為雙曲線(hyperbola)。

  提問(wèn)這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?

  學(xué)生試一試:畫(huà)出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫(huà)反比函數(shù)圖象,進(jìn)一步掌握畫(huà)函數(shù)圖象的步驟)。

  學(xué)生討論、交流以下問(wèn)題,并將討論、交流的結(jié)果回答問(wèn)題。

  1、這個(gè)函數(shù)的.圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?

  2、反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?

  3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?

  反比例函數(shù)有下列性質(zhì):

  (1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;

 。2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。

  注

  1、雙曲線的兩個(gè)分支與x軸和y軸沒(méi)有交點(diǎn);

  2、雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱。

  以上兩點(diǎn)性質(zhì)在上堂課的問(wèn)題1和問(wèn)題2中反映了怎樣的實(shí)際意義?

  在問(wèn)題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少。

  在問(wèn)題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長(zhǎng),另一邊越小。

  三、實(shí)踐應(yīng)用

  例1若反比例函數(shù)的圖象在第二、四象限,求m的值。

  分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個(gè)條件可解出m的值。

  解由題意,得解得。

  例2已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過(guò)的象限。

  分析由于反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過(guò)二、四象限,又—k>0,所以直線與y軸的交點(diǎn)在x軸的上方。

  解因?yàn)榉幢壤瘮?shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過(guò)一、二、四象限。

  例3已知反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2)。

 。1)求這個(gè)函數(shù)的解析式,并畫(huà)出圖象;

 。2)若點(diǎn)A(—5,m)在圖象上,則點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否還在圖象上?

  分析(1)反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過(guò)列表、描點(diǎn)、連線可畫(huà)出反比例函數(shù)的圖象;

 。2)由點(diǎn)A在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否在圖象上。

  解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。

  而反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。

  所以,k=—2。

  即反比例函數(shù)的解析式為:。

 。2)點(diǎn)A(—5,m)在反比例函數(shù)圖象上,所以,

  點(diǎn)A的坐標(biāo)為。

  點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;

  點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;

  點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在這個(gè)圖象上;

  例4已知函數(shù)為反比例函數(shù)。

 。1)求m的值;

 。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

 。3)當(dāng)—3≤x≤時(shí),求此函數(shù)的最大值和最小值。

  解(1)由反比例函數(shù)的定義可知:解得,m=—2。

 。2)因?yàn)椤?<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。

 。3)因?yàn)樵诘趥(gè)象限內(nèi),y隨x的增大而增大,

  所以當(dāng)x=時(shí),y最大值=;

  當(dāng)x=—3時(shí),y最小值=。

  所以當(dāng)—3≤x≤時(shí),此函數(shù)的最大值為8,最小值為。

  例5一個(gè)長(zhǎng)方體的體積是100立方厘米,它的長(zhǎng)是y厘米,寬是5厘米,高是x厘米。

 。1)寫(xiě)出用高表示長(zhǎng)的函數(shù)關(guān)系式;

 。2)寫(xiě)出自變量x的取值范圍;

 。3)畫(huà)出函數(shù)的圖象。

  解(1)因?yàn)?00=5xy,所以。

 。2)x>0。

 。3)圖象如下:

  說(shuō)明由于自變量x>0,所以畫(huà)出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。

  四、交流反思

  本節(jié)課學(xué)習(xí)了畫(huà)反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。

  1、反比例函數(shù)的圖象是雙曲線(hyperbola)。

  2、反比例函數(shù)有如下性質(zhì):

 。1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;

 。2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。

  五、檢測(cè)反饋

  1、在同一直角坐標(biāo)系中畫(huà)出下列函數(shù)的圖象:

 。1);(2)。

  2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:

 。1)y和x的函數(shù)關(guān)系式;

 。2)當(dāng)時(shí),y的值;

  (3)當(dāng)x取何值時(shí),?

  3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。

  4、已知反比例函數(shù)經(jīng)過(guò)點(diǎn)A(2,—m)和B(n,2n),求:

 。1)m和n的值;

 。2)若圖象上有兩點(diǎn)P1(x1,y1)和P2(x2,y2),且x1<0

  初中數(shù)學(xué)教案 4

  教學(xué)目標(biāo):

  1、理解切線的判定定理,并學(xué)會(huì)運(yùn)用。

  2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。

  教學(xué)重點(diǎn):切線的判定定理和切線判定的方法。

  教學(xué)難點(diǎn):切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過(guò)半徑外端;二是直線垂直于這條半徑;學(xué)生開(kāi)始時(shí)掌握不好并極容易忽視一。

  教學(xué)過(guò)程:

  一、復(fù)習(xí)提問(wèn)

  【教師】

  問(wèn)題1.怎樣過(guò)直線l上一點(diǎn)P作已知直線的垂線?

  問(wèn)題2.直線和圓有幾種位置關(guān)系?

  問(wèn)題3.如何判定直線l是⊙O的切線?

  啟發(fā):(1)直線l和⊙O的公共點(diǎn)有幾個(gè)?

 。2)圓心O到直線L的距離與半徑的數(shù)量關(guān)系 如何?

  學(xué)生答完后,教師強(qiáng)調(diào)(2)是判定直線 l是⊙O的切線的常用方法,即: 定理:圓心O到直線l的距離OA 等于圓的半 (如圖1,投影顯示)

  再啟發(fā):若把距離OA理解為 OA⊥l,OA=r;把點(diǎn)A理解為半徑在圓上的端點(diǎn) ,請(qǐng)同學(xué)們?cè)噷⑸厦娑ɡ碛眯碌睦斫飧膶?xiě)成新的命題,此命題就 是這節(jié)課要學(xué)的“切線的判定定理”(板書(shū)課題)

  二、引入新課內(nèi)容

  【學(xué)生】命題:經(jīng)過(guò)半徑的在圓上的端點(diǎn)且垂直于半 徑的直線是圓的.切線。

  證明定理:?jiǎn)l(fā)學(xué)生分清命題的題設(shè)和結(jié)論,寫(xiě)出已 知、求證,分析證明思路,閱讀課本P60。

  定理:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線

  定理的證明:已知:直線l經(jīng)過(guò)半徑OA的外端點(diǎn)A,直線l⊥OA,

  求證:直線l是⊙O的切線

  證明:略

  定理的符號(hào)語(yǔ)言:∵直線l⊥OA,直線l經(jīng)過(guò)半徑OA的外端A

  ∴直線l為⊙O的切線。

  是非題:

 。1)垂直于圓的半徑的直線一定是這個(gè)圓的切線。 ( )

 。2)過(guò)圓的半徑的外端的直線一定是這個(gè)圓的切線。 ( )

  三、例題講解

  例1、已知:直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB。

  求證:直線AB是⊙O的切線。

  引導(dǎo)學(xué)生分析:由于AB過(guò)⊙O上的點(diǎn)C,所以連結(jié)OC,只要證明AB⊥OC即可。

  證明:連結(jié)OC.

  ∵OA=OB,CA=CB,

  ∴AB⊥OC

  又∵直線AB經(jīng)過(guò)半徑OC的外端C

  ∴直線AB是⊙O的切線。

  練習(xí)1、如圖,已知⊙O的半徑為R,直線AB經(jīng)過(guò)⊙O上的點(diǎn)A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。

  練習(xí)2、如圖,已知AB為⊙O的直徑,C為⊙O上一點(diǎn),AD⊥CD于點(diǎn)D,AC平分∠BAD。

  求證:CD是⊙O的切線。

  例2、如圖,已知AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,且BD=OB,過(guò)點(diǎn)D作射線DE,使∠ADE=30°。

  求證:DE是⊙O的切線。

  思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以 D為圓心,BD為半徑作圓,問(wèn)⊙D的切線有幾條?是哪幾條?為什么?

  四、小結(jié)

  1.切線的判定定理。

  2.判定一條直線是圓的切線的方法:

 、俣x:直線和圓有唯一公共點(diǎn)。

 、跀(shù)量關(guān)系:直線到圓心的距離等于該圓半徑(即d = r)。[

 、矍芯的判定定理:經(jīng)過(guò)半徑外端且與這條半徑垂直的直線是圓的切線。

  3.證明一條直線是圓的切線的輔助線和證法規(guī)律。

  凡是已知公共點(diǎn)(如:直線經(jīng)過(guò)圓上的點(diǎn);直線和圓有一個(gè)公共點(diǎn);)往往是"連結(jié)"圓心和公共點(diǎn),證明"垂直"(直線和半徑);若不知公共點(diǎn),則過(guò)圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點(diǎn),“連半徑,證垂直”;不知公共點(diǎn),則“作垂直,證半徑”。

  五、布置作業(yè):略

  《切線的判定》教后體會(huì)

  本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級(jí)研討課,我以“教師為引導(dǎo),學(xué)生為主體”的二期課改的理念出發(fā),通過(guò)學(xué)生自我活動(dòng)得到數(shù)學(xué)結(jié)論作為教學(xué)重點(diǎn),呈現(xiàn)學(xué)生真實(shí)的思維過(guò)程為教學(xué)宗旨,進(jìn)行教學(xué)設(shè)計(jì),目的在于讓學(xué)生對(duì)知識(shí)有一個(gè)本質(zhì)的、有效的理解。本節(jié)課切實(shí)反映了平時(shí)的教學(xué)情況,為前來(lái)調(diào)研和研討的老師提供了真實(shí)的樣本。反思本節(jié)課,有以下幾個(gè)成功與不足之處:

  成功之處:

  一、 教材的二度設(shè)計(jì)順應(yīng)了學(xué)生的認(rèn)知規(guī)律

  這批學(xué)生習(xí)慣于單一知識(shí)點(diǎn)的學(xué)習(xí),即得出一個(gè)知識(shí)點(diǎn),必須由淺入深反復(fù)進(jìn)行練習(xí),鞏固后方能加以提升與綜合,否則就會(huì)混淆概念或定理的條件和結(jié)論,導(dǎo)致錯(cuò)誤,久之便會(huì)失去學(xué)習(xí)數(shù)學(xué)的興趣和信心。本教時(shí)課本上將切線判定定理和性質(zhì)定理的導(dǎo)出作為第一課時(shí),兩個(gè)定理的運(yùn)用和切線的兩種常用的判定方法作為第二課時(shí),學(xué)生往往會(huì)因第一時(shí)間得不到及時(shí)的鞏固,對(duì)定理本質(zhì)的東西不能很好地理解,在運(yùn)用時(shí)抓不住關(guān)鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學(xué)生更是因知識(shí)點(diǎn)多不知所措,在云里霧里。二度設(shè)計(jì)將切線的判定方法作為第一課時(shí),切線的性質(zhì)定理以及兩個(gè)定理的綜合運(yùn)用作為第二課時(shí),這樣的設(shè)計(jì)即是對(duì)前面所學(xué)的“直線與圓相切的判定方法”的復(fù)習(xí),又是對(duì)后面學(xué)習(xí)綜合運(yùn)用兩個(gè)定理,合理選擇兩種方法判定切線作了鋪墊,教學(xué)呈現(xiàn)了一個(gè)循序漸進(jìn)、溫過(guò)知新的過(guò)程。從學(xué)生的反饋情況判斷,教學(xué)效果較為理想。

  二、重視學(xué)生數(shù)感的培養(yǎng)呼應(yīng)了課改的理念

  數(shù)感類似與語(yǔ)感、樂(lè)感、美感,擁有了感覺(jué),知識(shí)便會(huì)融會(huì)貫通,學(xué)習(xí)就會(huì)輕松。擁有數(shù)感,不僅會(huì)對(duì)數(shù)學(xué)知識(shí)反應(yīng)靈敏,更會(huì)在生活中不知不覺(jué)運(yùn)用數(shù)學(xué)思維方式解決實(shí)際問(wèn)題。本節(jié)課中,兩個(gè)例題由教師誘導(dǎo),學(xué)生發(fā)現(xiàn)完成的,而三個(gè)習(xí)題則完全放手讓學(xué)生去思考完成,不乏有不會(huì)做和做得復(fù)雜的學(xué)生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學(xué)生嘗試總結(jié)規(guī)律,也是對(duì)學(xué)生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學(xué)生得出,事實(shí)證明,學(xué)生有這樣的理解、概括和表達(dá)能力。通過(guò)思考得出正確的結(jié)論,這個(gè)結(jié)論往往是刻骨銘心的,長(zhǎng)此以往,對(duì)數(shù)和形的感覺(jué)會(huì)越來(lái)越好。

  不足之處:

  一、這節(jié)課沒(méi)有“高潮”,沒(méi)有讓學(xué)生特別興奮激起求知欲的情境,整個(gè)教學(xué)過(guò)程是在一個(gè)平靜、和諧的氛圍中完成的。

  二、課的引入太直截了當(dāng),脫離不了應(yīng)試教學(xué)的味道。

  三、教學(xué)風(fēng)格的定勢(shì)使所授知識(shí)不能很合理地與生活實(shí)際相聯(lián)系,一定程度上阻礙了學(xué)生解決實(shí)際問(wèn)題能力的發(fā)展。

  通過(guò)本節(jié)課的教學(xué),我深刻感悟到在教學(xué)實(shí)踐中,教師要不斷地充實(shí)自己,拓寬知識(shí)面,努力突破已有的教學(xué)形狀,適應(yīng)現(xiàn)代教育,適應(yīng)現(xiàn)代學(xué)生。課堂教學(xué)中,敢于實(shí)驗(yàn),舍得放手,盡量培養(yǎng)學(xué)生主體意識(shí),問(wèn)題讓學(xué)生自己去揭示,方法讓學(xué)生自己去探索,規(guī)律讓學(xué)生自己去發(fā)現(xiàn),知識(shí)讓學(xué)生自己去獲得,教師只提供給學(xué)生現(xiàn)實(shí)情境、充足的思考時(shí)間和活動(dòng)空間,給學(xué)生表現(xiàn)自我的機(jī)會(huì)和成功的體驗(yàn),培養(yǎng)學(xué)生的自我意識(shí),發(fā)揮學(xué)生的主體作用,來(lái)真正實(shí)現(xiàn)《數(shù)學(xué)課程標(biāo)準(zhǔn)》中提出的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者”這一教學(xué)理念。

  初中數(shù)學(xué)教案 5

  學(xué)習(xí)目標(biāo):

  1、通過(guò)具體動(dòng)手操作得出矩形的概念,知道矩形與平行四邊形的區(qū)別與聯(lián)系

  2、通過(guò)類比平行四邊形的性質(zhì)定理,推導(dǎo)并掌握矩形的性質(zhì)定理,會(huì)用定理進(jìn)行一些簡(jiǎn)單的計(jì)算證明、

  3、通過(guò)矩形的對(duì)角線相等這一性質(zhì)能推導(dǎo)出直角三角形斜邊上的中線等于斜邊的一半,感受直角三角形與矩形之間的內(nèi)在聯(lián)系,發(fā)展學(xué)生的合理推理的能力

  學(xué)習(xí)重難點(diǎn):

  重點(diǎn):矩形的性質(zhì)定理

  難點(diǎn):靈活應(yīng)用矩形的性質(zhì)進(jìn)行有關(guān)的計(jì)算與證明

  課前準(zhǔn)備

  教具準(zhǔn)備:活動(dòng)平行四邊形框架、教師準(zhǔn)備PPT課件

  教學(xué)過(guò)程:

  知識(shí)回顧

  1、什么叫平行四邊形?

  2、平行四邊形有哪些性質(zhì)?

  【設(shè)計(jì)意圖】:

  通過(guò)對(duì)舊知的復(fù)習(xí),一方面鞏固就知,另一方面為學(xué)習(xí)新知做好鋪墊

  合作探究一:矩形的定義

  閱讀課本第17-18頁(yè),“實(shí)驗(yàn)與探究”,思考:什么叫做矩形?

  用四根木條制作一個(gè)平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示下圖,當(dāng)平行四邊形的一個(gè)內(nèi)角由銳角變?yōu)殁g角的過(guò)程中,會(huì)發(fā)生怎樣的特殊情況,這時(shí)的圖形是什么圖形、從上面的演示過(guò)程可以發(fā)現(xiàn):平行四邊形具備什么條件時(shí),就成了矩形?

  【設(shè)計(jì)意圖】:

  通過(guò)小組合作觀察,討論平行四邊形具備什么條件時(shí),就成了矩形,自己歸納出矩形的定義、給學(xué)生更多的思考空間,促進(jìn)學(xué)生積極思考,發(fā)展學(xué)生的思維

  歸納:有一個(gè)角是直角的`平行四邊形叫做矩形、

  合作探究二:矩形的性質(zhì)定理

  1、自主完成18頁(yè)的觀察與思考,通過(guò)實(shí)際操作回答提出的問(wèn)題

  2、小組合作:完成對(duì)性質(zhì)的證明過(guò)程

  【設(shè)計(jì)意圖】:

  通過(guò)利用手中的矩形紙片動(dòng)手操作使學(xué)生對(duì)矩形的性質(zhì)獲得豐富的直觀體驗(yàn),為總結(jié)矩形的性質(zhì)定理打下堅(jiān)實(shí)基礎(chǔ)

  矩形的性質(zhì)定理1:矩形的四個(gè)角都是直角

  矩形的性質(zhì)定理2:矩形的兩條對(duì)角線相等

  合作探究三:直角三角形的性質(zhì)定理3

  設(shè)矩形的對(duì)角線AC與BD交于點(diǎn)O,那么,BE是Rt△AB中一條怎樣的特殊線段

  (BO是Rt△ABC中斜邊AC上的中線)它與AC有什么大小關(guān)系,為什么?

  【設(shè)計(jì)意圖】:

  根據(jù)圖形學(xué)生很容易猜想結(jié)果,關(guān)鍵是從數(shù)學(xué)的角度證明留足充分的時(shí)間讓學(xué)生交流,教師適時(shí)引導(dǎo),明確論證方法、學(xué)生獨(dú)立完成證明,以培養(yǎng)學(xué)生的推理能力、讓學(xué)生感受數(shù)學(xué)結(jié)論的確定性和證明的必要性

  結(jié)論:直角三角形斜邊上的中線等于斜邊的一半

  例題講解:

  例1、如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,∠AOB=60°,AB=6㎝,求矩形對(duì)角線AC的長(zhǎng)?

  當(dāng)堂檢測(cè):

  1、矩形具有而平行四邊形不具有的性質(zhì)( )

 。ˋ)對(duì)角相等(B)對(duì)邊相等(C)對(duì)角線相等(D)對(duì)角線互相平分

  2、已知Rt△ ABC中,∠ABC=900,BD是斜邊AC上的中線

  (1)若BD=3㎝,則AC=㎝

  (2)若∠C=30°,AB=5㎝,則AC=㎝,BD=㎝

  3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的長(zhǎng)

  4、工人師傅做鋁合金窗框分下面三個(gè)步驟進(jìn)行:

 。1)先截出兩對(duì)符合規(guī)格的鋁合金窗料(如圖1),使AB=CD,EF=GH;

 。2)擺放成如圖(2)的四邊形,則這時(shí)窗框的形狀是_____,根據(jù)的數(shù)學(xué)道理是__________;

 。3)將直角尺靠緊窗框的一個(gè)角(如圖3)調(diào)整窗框的邊框,當(dāng)直角尺的兩條直角邊與窗框無(wú)縫隙時(shí)(如圖4),說(shuō)明窗框合格,這時(shí)窗框是____,根據(jù)的數(shù)學(xué)道理是________________。

  課堂小結(jié):

  請(qǐng)說(shuō)出你本節(jié)課的收獲,與大家一塊分享!

  作業(yè):

  課本P、20第2題

  初中數(shù)學(xué)教案 6

  知識(shí)技能

  會(huì)通過(guò)“移項(xiàng)”變形求解“ax+b=cx+d”類型的一元一次方程。

  數(shù)學(xué)思考

  1.經(jīng)歷探索具體問(wèn)題中的數(shù)量關(guān)系過(guò)程,體會(huì)一元一次方程是刻畫(huà)實(shí)際問(wèn)題的有效數(shù)學(xué)模型。進(jìn)一步發(fā)展符號(hào)意識(shí)。

  2.通過(guò)一元一次方程的學(xué)習(xí),體會(huì)方程模型思想和化歸思想。

  解決問(wèn)題

  能在具體情境中從數(shù)學(xué)角度和方法解決問(wèn)題,發(fā)展應(yīng)用意識(shí)。

  經(jīng)歷從不同角度尋求分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性。

  情感態(tài)度

  經(jīng)歷觀察、實(shí)驗(yàn)計(jì)算、交流等活動(dòng),激發(fā)求知欲,體驗(yàn)探究發(fā)現(xiàn)的快樂(lè)。

  教學(xué)重點(diǎn)

  建立方程解決實(shí)際問(wèn)題,會(huì)通過(guò)移項(xiàng)解 “ax+b=cx+d”類型的一元一次方程。

  教學(xué)難點(diǎn)

  分析實(shí)際問(wèn)題中的相等關(guān)系,列出方程。

  教學(xué)過(guò)程

  活動(dòng)一 知識(shí)回顧

  解下列方程:

  1. 3x+1=4

  2. x-2=3

  3. 2x+0.5x=-10

  4. 3x-7x=2

  提問(wèn):解這些方程時(shí),方程的解一般化成什么形式?這些題你采用了那些變形或運(yùn)算?

  教師:前面我們學(xué)習(xí)了簡(jiǎn)單的一元一次方程的解法,下面請(qǐng)大家解下列方程。

  出示問(wèn)題(幻燈片)。

  學(xué)生:獨(dú)立完成,板演2、4題,板演同學(xué)講解所用到的變形或運(yùn)算,共同講評(píng)。

  教師提問(wèn):(略)

  教師追問(wèn):變形的依據(jù)是什么?

  學(xué)生獨(dú)立思考、回答交流。

  本次活動(dòng)中教師關(guān)注:

 。1)學(xué)生能否準(zhǔn)確理解運(yùn)用等式性質(zhì)和合并同列項(xiàng)求解方程。

 。2)學(xué)生對(duì)解一元一次方程的變形方向(化成x=a的形式)的理解。

  通過(guò)這個(gè)環(huán)節(jié),引導(dǎo)學(xué)生回顧利用等式性質(zhì)和合并同類項(xiàng)對(duì)方程進(jìn)行變形,再現(xiàn)等式兩邊同時(shí)加上(或減去)同一個(gè)數(shù)、兩邊同時(shí)乘以(除以,不為0)同一個(gè)數(shù)、合并同類項(xiàng)等運(yùn)算,為繼續(xù)學(xué)習(xí)做好鋪墊。

  活動(dòng)二 問(wèn)題探究

  問(wèn)題2:把一些圖書(shū)分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本這個(gè)班有多少學(xué)生?

  教師:出示問(wèn)題(投影片)

  提問(wèn):在這個(gè)問(wèn)題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗(yàn)?zāi)愦蛩阍趺醋觯?/p>

 。▽W(xué)生嘗試提問(wèn))

  學(xué)生:讀題,審題,獨(dú)立思考,討論交流。

  1.找出問(wèn)題中的已知數(shù)和已知條件。(獨(dú)立回答)

  2.設(shè)未知數(shù):設(shè)這個(gè)班有x名學(xué)生。

  3.列代數(shù)式:x參與運(yùn)算,探索運(yùn)算關(guān)系,表示相關(guān)量。(討論、回答、交流)

  4.找相等關(guān)系:

  這批書(shū)的總數(shù)是一個(gè)定值,表示它的兩個(gè)等式相等(學(xué)生回答,教師追問(wèn))

  5.列方程:3x+20=4x-25(1)

  總結(jié)提問(wèn):通過(guò)列方程解決實(shí)際問(wèn)題分析時(shí),要經(jīng)歷那些步驟?書(shū)寫(xiě)時(shí)呢?

  教師提問(wèn)1:這個(gè)方程與我們前面解過(guò)的方程有什么不同?

  學(xué)生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(xiàng)(3x與4x)和不含字母的常數(shù)項(xiàng)(20與-25)

  教師提問(wèn)2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?

  學(xué)生思考、探索:為使方程的右邊沒(méi)有含x的項(xiàng),等號(hào)兩邊同減去4x,為使方程的左邊沒(méi)有常數(shù)項(xiàng),等號(hào)兩邊同減去20

  3x-4x=-25-20(2)

  教師提問(wèn)3:以上變形依據(jù)是什么?

  學(xué)生回答:等式的性質(zhì)1。

  歸納:像上面那樣把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。

  師生共同完成解答過(guò)程。

  設(shè)問(wèn)4:以上解方程中“移項(xiàng)”起了什么作用?

  學(xué)生討論、回答,師生共同整理:

  通過(guò)移項(xiàng),含未知數(shù)的項(xiàng)與常數(shù)項(xiàng)分別位于方程左右兩邊,使方程更接近于x=a的形式。

  教師提問(wèn)5:解這個(gè)方程,我們經(jīng)歷了那些步驟?列方程時(shí)找了怎樣的相等關(guān)系?

  學(xué)生思考回答。

  教師關(guān)注:

 。1)學(xué)生對(duì)列方程解決實(shí)際問(wèn)題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?

  在參與觀察、比較、嘗試、交流等數(shù)學(xué)活動(dòng)中,體驗(yàn)探究發(fā)現(xiàn)成功的快樂(lè)。

  活動(dòng)三 解法運(yùn)用

  例2解方程

  3x+7=32-2x

  教師:出示問(wèn)題

  提問(wèn):解這個(gè)方程時(shí),第一步我們先干什么?

  學(xué)生講解,獨(dú)立完成,板演。

  提問(wèn):“移項(xiàng)”是注意什么?

  學(xué)生:變號(hào)。

  教師關(guān)注:學(xué)生“移項(xiàng)”時(shí)是否能夠注意變號(hào)。

  通過(guò)這個(gè)例題,掌握“ax+b=cx+d”類型的一元一次方程的.解法。體驗(yàn)“移項(xiàng)”這種變形在解方程中的作用,規(guī)范解題步驟。

  活動(dòng)四 鞏固提高

  1.第91頁(yè)練習(xí)(1)(2)

  2.某貨運(yùn)公司要用若干輛汽車運(yùn)送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問(wèn)運(yùn)送這批貨物的汽車多少量?

  3.小明步行由A地去B地,若每小時(shí)走6千米,則比規(guī)定時(shí)間遲到1小時(shí);若每小時(shí)走8千米,則比規(guī)定時(shí)間早到0.5小時(shí)。求A、B兩地之間的距離。

  教師按順序出示問(wèn)題。

  學(xué)生獨(dú)立完成,用實(shí)物投影展示部分學(xué)而生練習(xí)。

  教師關(guān)注:

  1.學(xué)生在計(jì)算中可能出現(xiàn)的錯(cuò)誤。

  2.x系數(shù)為分?jǐn)?shù)時(shí),可用乘的辦法,化系數(shù)為1。

  3.用實(shí)物投影展示學(xué)困生的完成情況,進(jìn)行評(píng)價(jià)、鼓勵(lì)。

  鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學(xué)生對(duì)解方程步驟的掌握情況和可能出現(xiàn)的計(jì)算錯(cuò)誤。

  2、3題的重點(diǎn)是在新情境中引導(dǎo)學(xué)生利用已有經(jīng)驗(yàn)解決實(shí)際問(wèn)題,達(dá)到鞏固提高的目的。

  活動(dòng)五

  提問(wèn)1:今天我們學(xué)習(xí)了解方程的那種變形?它有什么作用、應(yīng)注意什么?

  提問(wèn)2:本節(jié)課重點(diǎn)利用了什么相等關(guān)系,來(lái)列的方程?

  教師組織學(xué)生就本節(jié)課所學(xué)知識(shí)進(jìn)行小結(jié)。

  學(xué)生進(jìn)行總結(jié)歸納、回答交流,相互完善補(bǔ)充。

  教師關(guān)注:學(xué)生能否提煉出本節(jié)課的重點(diǎn)內(nèi)容,如果不能,教師則提出具體問(wèn)題,引導(dǎo)學(xué)生思考、交流。

  引導(dǎo)學(xué)生對(duì)本節(jié)所學(xué)知識(shí)進(jìn)行歸納、總結(jié)和梳理,以便于學(xué)生掌握和運(yùn)用。

  布置作業(yè):

  第93頁(yè)第3題

  初中數(shù)學(xué)教案 7

  教學(xué)目標(biāo)

  1.經(jīng)歷不同的拼圖方法驗(yàn)證公式的過(guò)程,在此過(guò)程中加深對(duì)因式分解、整式運(yùn)算、面積等的認(rèn)識(shí)。

  2.通過(guò)驗(yàn)證過(guò)程中數(shù)與形的結(jié)合,體會(huì)數(shù)形結(jié)合的思想以及數(shù)學(xué)知識(shí)之間內(nèi)在聯(lián)系,每一部分知識(shí)并不是孤立的。

  3.通過(guò)豐富有趣的拼圖活動(dòng),經(jīng)歷觀察、比較、拼圖、計(jì)算、推理交流等過(guò)程,發(fā)展空間觀念和有條理地思考和表達(dá)的能力,獲得一些研究問(wèn)題與合作交流方法與經(jīng)驗(yàn)。

  4.通過(guò)獲得成功的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。通過(guò)豐富有趣拼的圖活動(dòng)增強(qiáng)對(duì)數(shù)學(xué)學(xué)習(xí)的興趣。

  重點(diǎn)

  1.通過(guò)綜合運(yùn)用已有知識(shí)解決問(wèn)題的過(guò)程,加深對(duì)因式分解、整式運(yùn)算、面積等的認(rèn)識(shí)。

  2.通過(guò)拼圖驗(yàn)證公式的.過(guò)程,使學(xué)習(xí)獲得一些研究問(wèn)題與合作交流的方法與經(jīng)驗(yàn)。

  難點(diǎn)

  利用數(shù)形結(jié)合的方法驗(yàn)證公式

  教學(xué)方法

  動(dòng)手操作,合作探究課型新授課教具投影儀

  教師活動(dòng)學(xué)生活動(dòng)

  情景設(shè)置:

  你已知道的關(guān)于驗(yàn)證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨(dú)立思考和討論的時(shí)間,讓學(xué)生回想前面拼圖。)

  新課講解:

  把幾個(gè)圖形拼成一個(gè)新的圖形,再通過(guò)圖形面積的計(jì)算,常?梢缘玫揭恍┯杏玫氖阶印C绹(guó)第二十任總統(tǒng)伽菲爾德就由這個(gè)圖(由兩個(gè)邊長(zhǎng)分別為a、b、c的直角三角形和一個(gè)兩條直角邊都是c的直角三角形拼成一個(gè)新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:

  教師接著在介紹教材第94頁(yè)例題的拼法及相關(guān)公式

  提問(wèn):還能通過(guò)怎樣拼圖來(lái)解決以下問(wèn)題

 。1)任意選取若干塊這樣的硬紙片,嘗試拼成一個(gè)長(zhǎng)方形,計(jì)算它的面積,并寫(xiě)出相應(yīng)的等式;

 。2)任意寫(xiě)出一個(gè)關(guān)于a、b的二次三項(xiàng)式,如a2+4ab+3b2

  試用拼一個(gè)長(zhǎng)方形的方法,把這個(gè)二次三項(xiàng)式因式分解。

  這個(gè)問(wèn)題要給予學(xué)生充足的時(shí)間和空間進(jìn)行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時(shí)鼓勵(lì)學(xué)生在拼圖過(guò)程中進(jìn)行交流合作

  了解學(xué)生拼圖的情況及利用自己的拼圖驗(yàn)證的情況。教師在巡視過(guò)程中,及時(shí)指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗(yàn)證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。

  小結(jié):

  從這節(jié)課中你有哪些收獲?

 。ń處煈(yīng)給予學(xué)生充分的時(shí)間鼓勵(lì)學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵(lì)、多肯定。最后,教師要對(duì)學(xué)生所說(shuō)的進(jìn)行全面的總結(jié)。)

  學(xué)生回答

  a(b+c+d)=ab+ac+ad

 。╝+b)(c+d)=ac+ad+bc+bd

 。╝+b)2=a2+2ab+b2

  學(xué)生拿出準(zhǔn)備好的硬紙板制作

  給學(xué)生充分的時(shí)間進(jìn)行拼圖、思考、交流經(jīng)驗(yàn),對(duì)于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。

  初中數(shù)學(xué)教案 8

  三維目標(biāo)

  一、知識(shí)與技能

  1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問(wèn)題

  2.能綜合利用物理杠桿知識(shí)、反比例函數(shù)的知識(shí)解決一些實(shí)際問(wèn)題

  二、過(guò)程與方法

  1.經(jīng)歷分析實(shí)際問(wèn)題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問(wèn)題

  2. 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問(wèn)題的能力

  三、情感態(tài)度與價(jià)值觀

  1.積極參與交流,并積極發(fā)表意見(jiàn)

  2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問(wèn)題和進(jìn)行交流的重要工具

  教學(xué)重點(diǎn)

  掌握從物理問(wèn)題中建構(gòu)反比例函數(shù)模型

  教學(xué)難點(diǎn)

  從實(shí)際問(wèn)題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析物理問(wèn)題,建立函數(shù)模型,教學(xué)時(shí)注意分析過(guò)程,滲透數(shù)形結(jié)合的思想

  教具準(zhǔn)備

  多媒體課件

  教學(xué)過(guò)程

  一、創(chuàng)設(shè)問(wèn)題情境,引入新課

  活動(dòng)1

  問(wèn) 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問(wèn)題,這也稱為跨學(xué)科應(yīng)用,下面的例子就是其中之一

  在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時(shí),電流I=2安培

  (1)求I與R之間的函數(shù)關(guān)系式;

  (2)當(dāng)電流I=0.5時(shí),求電阻R的值

  設(shè)計(jì)意圖:

  運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問(wèn)題,提高各學(xué)科相互之間的綜合應(yīng)用能力

  師生行為:

  可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用

  教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識(shí)的引導(dǎo)

  師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的一對(duì)對(duì)應(yīng)值)得到字母系數(shù)k的值

  生:(1)解:設(shè)I=kR ∵R=5,I=2,于是

  2=k5 ,所以k=10,∴I=10R

  (2) 當(dāng)I=0.5時(shí),R=10I=100.5 =20(歐姆)

  師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng)”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?

  生:這是古希臘科學(xué)家阿基米德的名言

  師:是的,公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;

  阻力×阻力臂=動(dòng)力×動(dòng)力臂(如下圖)

  下面我們就來(lái)看一例子

  二、講授新課

  活動(dòng)2

  小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米

  (1)動(dòng)力F與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的.力?

  (2)若想使動(dòng)力F不超過(guò)題(1)中所用力的一半,則動(dòng)力臂至少要加長(zhǎng)多少?

  設(shè)計(jì)意圖:

  物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系。因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問(wèn)題,即跨學(xué)科綜合應(yīng)用

  師生行為:

  先由學(xué)生根據(jù)“杠桿定律”解決上述問(wèn)題。

  教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系

  教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注

 、賹W(xué)生能否主動(dòng)用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問(wèn)題,從而建立與反比例函數(shù)的關(guān)系;

 、趯W(xué)生能否面對(duì)困難,認(rèn)真思考,尋找解題的途徑;

 、蹖W(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),對(duì)數(shù)學(xué)和物理有著濃厚的興趣

  師:“撬動(dòng)石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來(lái)解決此問(wèn)題

  生:解:(1)根據(jù)“杠桿定律” 有

  Fl=1200×0.5,得F =600l

  當(dāng)l=1.5時(shí),F(xiàn)=6001.5 =400

  因此,撬動(dòng)石頭至少需要400牛頓的力

  (2)若想使動(dòng)力F不超過(guò)題(1)中所用力的一半,即不超過(guò)200牛,根據(jù)“杠桿定律”有

  Fl=600,

  l=600F .

  當(dāng)F=400×12 =200時(shí),

  l=600200 =3

  3-1.5=1.5(米)

  因此,若想用力不超過(guò)400牛頓的一半,則動(dòng)力臂至少要如長(zhǎng)1.5米

  生:也可用不等式來(lái)解,如下:

  Fl=600,F(xiàn)=600l

  而F≤400×12 =200時(shí)

  600l ≤200

  l≥3

  所以l-1.5≥3-1.5=1.5

  即若想用力不超過(guò)400牛頓的一半,則動(dòng)力臂至少要加長(zhǎng)1.5米

  生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出

  師:很棒!請(qǐng)同學(xué)們下去親自畫(huà)出圖象完成,現(xiàn)在請(qǐng)同學(xué)們思考下列問(wèn)題:

  用反比例函數(shù)的知識(shí)解釋:在我們使用橇棍時(shí),為什么動(dòng)力臂越長(zhǎng)越省力?

  生:因?yàn)樽枇妥枇Ρ鄄蛔,設(shè)動(dòng)力臂為l,動(dòng)力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)

  根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時(shí),在第一象限F隨l的增大而減小,即動(dòng)力臂越長(zhǎng)越省力

  師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛,例如在解決經(jīng)濟(jì)預(yù)算問(wèn)題中的應(yīng)用

  活動(dòng)3

  問(wèn)題:某地上年度電價(jià)為0.8元,年用電量為1億度,本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例。又當(dāng)x=0.65元時(shí),y=0.8.

  (1)求y與x之間的函數(shù)關(guān)系式;

  (2)若每度電的成本價(jià)0.3元,電價(jià)調(diào)至0.6元,請(qǐng)你預(yù)算一下本年度電力部門的純收人多少?

  設(shè)計(jì)意圖:

  在生活中各部門,經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問(wèn)題,有時(shí)關(guān)系到因素之間是反比例函數(shù)關(guān)系,對(duì)于此類問(wèn)題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個(gè)具體問(wèn)題

  師生行為:

  由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成

  教師應(yīng)給予“學(xué)困生”以一定的幫助

  生:解:(1)∵y與x -0.4成反比例,

  ∴設(shè)y=kx-0.4 (k≠0)

  把x=0.65,y=0.8代入y=kx-0.4 ,得

  k0.65-0.4 =0.8.

  解得k=0.2,

  ∴y=0.2x-0.4=15x-2

  ∴y與x之間的函數(shù)關(guān)系為y=15x-2

  (2)根據(jù)題意,本年度電力部門的純收入為

  (0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)

  答:本年度的純收人為0.6億元,

  師生共析:

  (1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個(gè)變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時(shí),y=0.8得出字母系數(shù)的值;

  (2)純收入=總收入-總成本

  三、鞏固提高

  活動(dòng)4

  一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請(qǐng)根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時(shí)二氧化碳?xì)怏w的體積V的值

  設(shè)計(jì)意圖:

  進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系

  師生行為

  由學(xué)生獨(dú)立完成,教師講評(píng)

  師:若要求出ρ=1.1 kg/m3時(shí),V的值,首先V和ρ的函數(shù)關(guān)系

  生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ

  生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ ,得

  V=990ρ =9901.1 =900(m3)

  所以當(dāng)密度ρ=1. 1 kg/m3時(shí)二氧化碳?xì)怏w的氣體為900m3

  四、課時(shí)小結(jié)

  活動(dòng)5

  你對(duì)本節(jié)內(nèi)容有哪些認(rèn)識(shí)?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問(wèn)題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得。

  設(shè)計(jì)意圖:

  這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識(shí),調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn)機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性。

  師生行為:

  學(xué)生可分小組活動(dòng),在小組內(nèi)交流收獲, 然后由小組代表在全班交流。

  教師組織學(xué)生小結(jié)。

  反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ)。用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時(shí)不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識(shí)間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系。

  板書(shū)設(shè)計(jì)

  17.2 實(shí)際問(wèn)題與反比例函數(shù)(三)

  用反比例函數(shù)的知識(shí)解釋:在我們使 用撬棍時(shí),為什么動(dòng) 力臂越長(zhǎng)越省力?

  設(shè)阻力為F1,阻力臂長(zhǎng)為l1,所以F1×l1=k(k為常數(shù)且k>0)。動(dòng)力和動(dòng)力臂分別為F,l。則根據(jù)杠桿定理,

  Fl=k 即F=kl (k>0且k為常數(shù))。

  由此可知F是l的反比例函數(shù),并且當(dāng)k>0時(shí),F(xiàn)隨l的增大而減小。

  活動(dòng)與探究

  學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示

  (1)綠化帶面積是多少?你能寫(xiě)出這一函數(shù)表達(dá)式嗎?

  (2)完成下表,并回答問(wèn)題:如果該綠化帶的長(zhǎng)不得超過(guò)40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?

  x(m) 10 20 30 40

  y(m)

  過(guò)程:點(diǎn)A(40,10)在反比例函數(shù)圖象上說(shuō)明點(diǎn)A的橫縱坐標(biāo)滿足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值

  結(jié)果:

  (1)綠化帶面積為10×40=400(m2)

  設(shè)該反比例函數(shù)的表達(dá)式為y=kx ,

  ∵圖象經(jīng)過(guò)點(diǎn)A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400。

  ∴函數(shù)表達(dá)式為y=400x .

  (2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403 ,10。從圖中可以看出。若長(zhǎng)不超過(guò)40m,則它的寬應(yīng)大于等于10m。

  初中數(shù)學(xué)教案 9

  一、教學(xué)任務(wù)分析

  1、教學(xué)目標(biāo)定位

  根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》和素質(zhì)教育的要求,結(jié)合學(xué)生的認(rèn)知規(guī)律及心理特征而確定,即:七年級(jí)的學(xué)生對(duì)身邊有趣事物充滿好奇心,對(duì)一些有規(guī)律的問(wèn)題有探求的欲望,有很強(qiáng)的表現(xiàn)欲,同時(shí)又具備了一定的歸納、總結(jié)表達(dá)的能力。因此,確定如下教學(xué)目標(biāo):

 。1).知識(shí)技能目標(biāo)

  讓學(xué)生掌握多邊形的內(nèi)角和的公式并熟練應(yīng)用。

 。2).過(guò)程和方法目標(biāo)

  讓學(xué)生經(jīng)歷知識(shí)的形成過(guò)程,認(rèn)識(shí)數(shù)學(xué)特征,獲得數(shù)學(xué)經(jīng)驗(yàn),進(jìn)一步發(fā)展學(xué)生的說(shuō)理意識(shí)和簡(jiǎn)單推理,合情推理能力。

  (3).情感目標(biāo)

  激勵(lì)學(xué)生的學(xué)習(xí)熱情,調(diào)動(dòng)他們的學(xué)習(xí)積極性,使他們有自信心,激發(fā)學(xué)生樂(lè)于合作交流意識(shí)和獨(dú)立思考的習(xí)慣。

  2、教學(xué)重、難點(diǎn)定位

  教學(xué)重點(diǎn)是多邊形的內(nèi)角和的得出和應(yīng)用。

  教學(xué)難點(diǎn)是探索和歸納多邊形內(nèi)角和的過(guò)程。

  二、教學(xué)內(nèi)容分析

  1、教材的地位與作用

  本課選自人教版數(shù)學(xué)七年級(jí)下冊(cè)第七章第三節(jié)《多邊形的內(nèi)角和》的第一課時(shí)。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,層層遞進(jìn),這樣編排易于激發(fā)學(xué)生的學(xué)習(xí)興趣,很適合學(xué)生的認(rèn)知特點(diǎn)。

  2、聯(lián)系及應(yīng)用

  本節(jié)課是以三角形的知識(shí)為基礎(chǔ),仿照三角形建立多邊形的有關(guān)概念。因此

  多邊形的邊、內(nèi)角、內(nèi)角和等等都可以同三角形類比。通過(guò)這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會(huì)把復(fù)雜化為簡(jiǎn)單,化未知為已知,從特殊到一般和轉(zhuǎn)化等重要的思想方法。而多邊形在工程技術(shù)和實(shí)用圖案等方面有許多的實(shí)際應(yīng)用,下一節(jié)平面鑲嵌就要用到,讓學(xué)生接觸一些多邊形的實(shí)例,可以加深對(duì)它的概念以及性質(zhì)的理解。

  三、教學(xué)診斷分析

  學(xué)生對(duì)三角形的知識(shí)都已經(jīng)掌握。讓學(xué)生由三角形的內(nèi)角和等于180°,是一個(gè)定值,猜想四邊形的內(nèi)角和也是一個(gè)定值,這是學(xué)生很容易理解的地方。由幾個(gè)特殊的四邊形的內(nèi)角和出發(fā),譬如長(zhǎng)方形、正方形的內(nèi)角和都等于360°,可知如果四邊形的內(nèi)角和是一個(gè)定值,這個(gè)定值是360°。要得到四邊形的內(nèi)角和等于360°這個(gè)結(jié)論最直接的方法就是用量角器來(lái)度量。讓學(xué)生動(dòng)手探索實(shí)踐,在探索過(guò)程中發(fā)現(xiàn)問(wèn)題"度量會(huì)有誤差"。發(fā)現(xiàn)問(wèn)題后接著引導(dǎo)學(xué)生聯(lián)想對(duì)角線的作用,四邊形的一條對(duì)角線,把它分成了兩個(gè)三角形,應(yīng)用三角形的內(nèi)角和等于180°,就得到四邊形的內(nèi)角和等于360°。讓學(xué)生從特殊四邊形的內(nèi)角和聯(lián)想一般四邊形的內(nèi)角和,并在思想上引導(dǎo),學(xué)習(xí)將新問(wèn)題化歸為已有結(jié)論的思想方法,這里學(xué)生都容易理解。課堂教學(xué)設(shè)計(jì)中,在探究五邊形,六邊形和七邊形的內(nèi)角和時(shí),讓學(xué)生動(dòng)手實(shí)踐,設(shè)置探究活動(dòng)二,為了讓學(xué)生拓寬思路,從不同的'角度去思考這個(gè)問(wèn)題,這個(gè)活動(dòng)對(duì)學(xué)生的動(dòng)手能力要求進(jìn)一步提高了,學(xué)生對(duì)這個(gè)問(wèn)題的理解稍微有些難度,但學(xué)生可根據(jù)自己本身的特點(diǎn)來(lái)加以補(bǔ)充和完善。在教學(xué)設(shè)計(jì)中,要求根據(jù)小組選擇的方法探索多邊形的內(nèi)角和。首先,小組內(nèi)各個(gè)成員對(duì)所選擇的方法要了解,能夠把掌握的知識(shí)運(yùn)用到實(shí)踐中;再者,小組內(nèi)各個(gè)成員需要分工協(xié)作,才能夠順利的把任務(wù)完成;最后,學(xué)生還需要把自己的思維從感性認(rèn)識(shí)提升到理性認(rèn)識(shí)的高度,這樣就培養(yǎng)了學(xué)生合情推理的意識(shí)。

  四、教法特點(diǎn)及預(yù)期效果分析

  本節(jié)課借鑒了美國(guó)教育家杜威的"在做中學(xué)"的理論和葉圣陶先生所倡導(dǎo)的"解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間"的思想,我確定如下教法和學(xué)法:

  1、教學(xué)方法的設(shè)計(jì)

  我采用了探究式教學(xué)方法,整個(gè)探究學(xué)習(xí)的過(guò)程充滿了師生之間,學(xué)生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者、合作者,學(xué)生才是學(xué)習(xí)的主體。

  2、活動(dòng)的開(kāi)展

  利用學(xué)生的好奇心設(shè)疑、解疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。

  3、現(xiàn)代教育技術(shù)的應(yīng)用

  我利用課件輔助教學(xué),適時(shí)呈現(xiàn)問(wèn)題情景,以豐富學(xué)生的感性認(rèn)識(shí),增強(qiáng)直觀效果,提高課堂效率。探究活動(dòng)在本次教學(xué)設(shè)計(jì)中占了非常大的比例,探究活動(dòng)一設(shè)置目的讓學(xué)生動(dòng)手實(shí)踐,并把新知識(shí)與學(xué)過(guò)的三角形的相關(guān)知識(shí)聯(lián)系起來(lái);探究活動(dòng)二設(shè)置目的讓學(xué)生拓寬思路,為放開(kāi)書(shū)本的束縛打下基礎(chǔ);培養(yǎng)學(xué)生動(dòng)手操作的能力和合情推理的意識(shí)。通過(guò)師生共同活動(dòng),訓(xùn)練學(xué)生的發(fā)散性思維,培養(yǎng)學(xué)生的創(chuàng)新精神;使學(xué)生懂得數(shù)學(xué)內(nèi)容普遍存在相互聯(lián)系,相互轉(zhuǎn)化的特點(diǎn)。練習(xí)活動(dòng)的設(shè)計(jì),目的一檢查學(xué)生的掌握知識(shí)的情況,并促進(jìn)學(xué)生積極思考;目的二凸現(xiàn)小組合作的特點(diǎn),并促進(jìn)學(xué)生情感交流。

  以上是我對(duì)《多邊形的內(nèi)角和》的教學(xué)設(shè)計(jì)說(shuō)明。

  初中數(shù)學(xué)教案 10

  教學(xué)目標(biāo)

 。1)認(rèn)知目標(biāo)

  理解并掌握分式的乘除法法則,能進(jìn)行簡(jiǎn)單的分式乘除法運(yùn)算,能解決一些與分式乘除有關(guān)的實(shí)際問(wèn)題。

 。2)技能目標(biāo)

  經(jīng)歷從分?jǐn)?shù)的乘除法運(yùn)算到分式的乘除法運(yùn)算的過(guò)程,培養(yǎng)學(xué)生類比的探究能力,加深對(duì)從特殊到一般數(shù)學(xué)的思想認(rèn)識(shí)。

 。3)情感態(tài)度與價(jià)值觀

  教學(xué)中讓學(xué)生在主動(dòng)探究,合作交流中滲透類比轉(zhuǎn)化的思想,使學(xué)生在學(xué)知識(shí)的同時(shí)感受探索的樂(lè)趣和成功的體驗(yàn)。

  教學(xué)重難點(diǎn)

  重點(diǎn):運(yùn)用分式的乘除法法則進(jìn)行運(yùn)算。

  難點(diǎn):分子、分母為多項(xiàng)式的分式乘除運(yùn)算。

  教學(xué)過(guò)程

 。ㄒ唬┨岢鰡(wèn)題,引入課題

  俗話說(shuō):“好的開(kāi)端是成功的一半”同樣,好的引入能激發(fā)學(xué)生興趣和求知欲。因此我用實(shí)際出發(fā)提出現(xiàn)實(shí)生活中的問(wèn)題:

  問(wèn)題1:求容積的高是,(引出分式乘法的學(xué)習(xí)需要)。

  問(wèn)題2:求大拖拉機(jī)的工作效率是小拖拉機(jī)的工作效率的倍,(引出分式除法的學(xué)習(xí)需要)。

  從實(shí)際出發(fā),引出分式的'乘除的實(shí)在存在意義,讓學(xué)生感知學(xué)習(xí)分式的乘法和除法的實(shí)際需要,從而激發(fā)學(xué)生興趣和求知欲。

  (二)類比聯(lián)想,探究新知

  從學(xué)生熟悉的分?jǐn)?shù)的乘除法出發(fā),引發(fā)學(xué)生的學(xué)習(xí)興趣。

  解后總結(jié)概括:

 。1)式是什么運(yùn)算?依據(jù)是什么?

 。2)式又是什么運(yùn)算?依據(jù)是什么?能說(shuō)出具體內(nèi)容嗎?(如果有困難教師應(yīng)給于引導(dǎo),學(xué)生應(yīng)該能說(shuō)出依據(jù)的是:分?jǐn)?shù)的乘法和除法法則)教師加以肯定,并指出與分?jǐn)?shù)的乘除法法則類似,引導(dǎo)學(xué)生類比分?jǐn)?shù)的乘除法則,猜想出分式的乘除法則。

  (分式的乘除法法則)

  乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。

  除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。

 。ㄈ├}分析,應(yīng)用新知

  師生活動(dòng):教師參與并指導(dǎo),學(xué)生獨(dú)立思考,并嘗試完成例題。

  P11的例1,在例題分析過(guò)程中,為了突出重點(diǎn),應(yīng)多次回顧分式的乘除法法則,使學(xué)生耳熟能詳。P11例2是分子、分母為多單項(xiàng)式的分式乘除法則的運(yùn)用,為了突破本節(jié)課的難點(diǎn)我采取板演的形式,和學(xué)生一起詳細(xì)分析,提醒學(xué)生關(guān)注易錯(cuò)易漏的環(huán)節(jié),學(xué)會(huì)解題的方法。

  (四)練習(xí)鞏固,培養(yǎng)能力

  P13練習(xí)第2題的(1)、(3)、(4)與第3題的(2)。

  師生活動(dòng):教師出示問(wèn)題,學(xué)生獨(dú)立思考解答,并讓學(xué)生板演或投影展示學(xué)生的解題過(guò)程。

  通過(guò)這一環(huán)節(jié),主要是為了通過(guò)課堂跟蹤反饋,達(dá)到鞏固提高的目的,進(jìn)一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓學(xué)生板演,一是為了暴露問(wèn)題,二是為了規(guī)范解題格式和結(jié)果。

  (五)課堂小結(jié),回扣目標(biāo)

  引導(dǎo)學(xué)生自主進(jìn)行課堂小結(jié):

  1、本節(jié)課我們學(xué)習(xí)了哪些知識(shí)?

  2、在知識(shí)應(yīng)用過(guò)程中需要注意什么?

  3、你有什么收獲呢?

  師生活動(dòng):學(xué)生反思,提出疑問(wèn),集體交流。

 。┎贾米鳂I(yè)

  教科書(shū)習(xí)題6.2第1、2(必做)練習(xí)冊(cè)P(選做),我設(shè)計(jì)了必做題和選做題,必做題是對(duì)本節(jié)課內(nèi)容的一個(gè)反饋,選做題是對(duì)本節(jié)課知識(shí)的一個(gè)延伸。

  板書(shū)設(shè)計(jì)

  在本節(jié)課中我將采用提綱式的板書(shū)設(shè)計(jì),因?yàn)樘峋V式—條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對(duì)教材內(nèi)容和知識(shí)體系的理解和記憶。

  初中數(shù)學(xué)教案 11

  【教學(xué)目標(biāo)】

  1、掌握多邊形的內(nèi)角和的計(jì)算方法,并能用內(nèi)角和知識(shí)解決一些簡(jiǎn)單的問(wèn)題。

  2、經(jīng)歷探索多邊形內(nèi)角和計(jì)算公式的過(guò)程,體會(huì)如何探索研究問(wèn)題。

  3、通過(guò)將多邊形"分割"為三角形的過(guò)程體驗(yàn),初步認(rèn)識(shí)"轉(zhuǎn)化"的數(shù)學(xué)思想。

  【教學(xué)重點(diǎn)與教學(xué)難點(diǎn)】

  1、重點(diǎn):多邊形的內(nèi)角和公式。

  2、難點(diǎn):多邊形內(nèi)角和的推導(dǎo)。

  3、關(guān)鍵:。多邊形"分割"為三角形。

  【教具準(zhǔn)備】

  三角板、卡紙

  【教學(xué)過(guò)程】

  一、創(chuàng)設(shè)情景,揭示問(wèn)題

  1、在一次數(shù)學(xué)基礎(chǔ)知識(shí)搶答賽中,老師出了這么一個(gè)問(wèn)題,一個(gè)五邊形的所有角相加等于多少度?一個(gè)學(xué)生馬上能回答,你們能嗎?

  2、教具演示:將一個(gè)五邊形沿對(duì)角線剪開(kāi),能分割成幾個(gè)三角形?

  你能說(shuō)出五邊形的內(nèi)角和是多少度嗎?(點(diǎn)題)意圖:利用搶答問(wèn)題和教具演示,調(diào)動(dòng)學(xué)生的`學(xué)習(xí)興趣和注意力

  二、探索研究學(xué)會(huì)新知

  1、回顧舊知,引出問(wèn)題:

 。1)三角形的內(nèi)角和等于_________。外角和等于____________

 。2)長(zhǎng)方形的內(nèi)角和等于_____,正方形的內(nèi)角和等于__________。

  2、探索四邊形的內(nèi)角和:

 。1)學(xué)生思考,同學(xué)討論交流。

 。2)學(xué)生敘述對(duì)四邊形內(nèi)角和的認(rèn)識(shí)(第一二組通過(guò)測(cè)量相加,第三四組通過(guò)畫(huà)對(duì)角線分成兩個(gè)三角形。)回顧三角形,正方形,長(zhǎng)方形內(nèi)角和,使學(xué)生對(duì)新問(wèn)題進(jìn)行思考與猜想。以四邊形的內(nèi)角和作為探索多邊形的。突破口。

  (3)引導(dǎo)學(xué)生用"分割法"探索四邊形的內(nèi)角和:

  方法一:連接一條對(duì)角線,分成2個(gè)三角形:

  180°+180°=360°

  從簡(jiǎn)單的思維方式發(fā)散學(xué)生的想象力達(dá)到"分割"問(wèn)題,并讓學(xué)生發(fā)現(xiàn)問(wèn)題,解決問(wèn)題教學(xué)步驟教學(xué)內(nèi)容備注方法二:在四邊形內(nèi)部任取一點(diǎn),與頂點(diǎn)連接組成4個(gè)三角形。

  180°×4-360°=360°

  3、探索多邊形內(nèi)角和的問(wèn)題,提出階梯式的問(wèn)題:

  你能嘗試用上面的方法一求出五邊形的內(nèi)角和嗎?(第一二組)

  你能嘗試用上面的方法一求出六邊形的內(nèi)角和嗎?(第三,四組)那么n邊形呢?

  4、及時(shí)運(yùn)用,掌握新知:

 。1)一個(gè)八邊形的內(nèi)角和是_____________度

 。2)一個(gè)多邊形的內(nèi)角和是720度,這個(gè)多邊形是_____邊形

  (3)一個(gè)正五邊形的每一個(gè)內(nèi)角是________,那么正六邊形的每個(gè)內(nèi)角是_________

  通過(guò)學(xué)生動(dòng)手去用分割法求五(六)邊形的內(nèi)角和,從簡(jiǎn)單到復(fù)雜,從而歸納出n邊形的內(nèi)角和。

  三、點(diǎn)例透析

  運(yùn)用新知例題:想一想:如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系呢?

  四、應(yīng)用訓(xùn)練強(qiáng)化理解

  4、第83頁(yè)練習(xí)1和2多邊形內(nèi)角和定理的應(yīng)用

  五、知識(shí)回放

  課堂小結(jié)提問(wèn)方式:本節(jié)課我們學(xué)習(xí)了什么?

  1、多邊形內(nèi)角和公式。

  2、多邊形內(nèi)角和計(jì)算是通過(guò)轉(zhuǎn)化為三角形。

  六、作業(yè)練習(xí)

  1、書(shū)面作業(yè):

  2、課外練習(xí):

  初中數(shù)學(xué)教案 12

  一、教材分析

  本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(六三學(xué)制)七年級(jí)下冊(cè)第七章第三節(jié)多邊形內(nèi)角和。

  二、教學(xué)目標(biāo)

  1、知識(shí)目標(biāo):了解多邊形內(nèi)角和公式。

  2、數(shù)學(xué)思考:通過(guò)把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問(wèn)題的方法。

  3、解決問(wèn)題:通過(guò)探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問(wèn)題的方法并能有效地解決問(wèn)題。

  4、情感態(tài)度目標(biāo):通過(guò)猜想、推理活動(dòng)感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。

  三、教學(xué)重、難點(diǎn)

  重點(diǎn):探索多邊形內(nèi)角和。

  難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。

  四、教學(xué)方法:

  引導(dǎo)發(fā)現(xiàn)法、討論法

  五、教具、學(xué)具

  教具:多媒體課件

  學(xué)具:三角板、量角器

  六、教學(xué)媒體:

  大屏幕、實(shí)物投影

  七、教學(xué)過(guò)程:

 。ㄒ唬﹦(chuàng)設(shè)情境,設(shè)疑激思

  師:大家都知道三角形的內(nèi)角和是180,那么四邊形的內(nèi)角和,你知道嗎?

  活動(dòng)一:探究四邊形內(nèi)角和。

  在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問(wèn)題的方法。

  方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來(lái),發(fā)現(xiàn)內(nèi)角和是360。

  方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360。

  接下來(lái),教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。

  師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?

  活動(dòng)二:探究五邊形、六邊形、十邊形的內(nèi)角和。

  學(xué)生先獨(dú)立思考每個(gè)問(wèn)題再分組討論。

  關(guān)注:

  (1)學(xué)生能否類比四邊形的方式解決問(wèn)題得出正確的結(jié)論。

 。2)學(xué)生能否采用不同的方法。

  學(xué)生分組討論后進(jìn)行交流(五邊形的內(nèi)角和)

  方法1:把五邊形分成三個(gè)三角形,3個(gè)180的`和是540。

  方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180的和減去一個(gè)周角360。結(jié)果得540。

  方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180的和減去一個(gè)平角180,結(jié)果得540。

  方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180加上360,結(jié)果得540。

  師:你真聰明!做到了學(xué)以致用。

  交流后,學(xué)生運(yùn)用幾何畫(huà)板演示并驗(yàn)證得到的方法。

  得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720,十邊形內(nèi)角和是1440。

 。ǘ┮晁伎,培養(yǎng)創(chuàng)新

  師:通過(guò)前面的討論,你能知道多邊形內(nèi)角和嗎?

  活動(dòng)三:探究任意多邊形的內(nèi)角和公式。

  思考:

 。1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?

 。2)多邊形的邊數(shù)與內(nèi)角和的關(guān)系?

 。3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?

  學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。

  發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180的和,五邊形內(nèi)角和是3個(gè)180的和,六邊形內(nèi)角和是4個(gè)180的和,十邊形內(nèi)角和是8個(gè)180的和。發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180。

  發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。

  得出結(jié)論:多邊形內(nèi)角和公式:(n-2)·180。

 。ㄈ⿲(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)

  1、口答:

 。1)七邊形內(nèi)角和( )

 。2)九邊形內(nèi)角和( )

 。3)十邊形內(nèi)角和( )

  2、搶答:

 。1)一個(gè)多邊形的內(nèi)角和等于1260,它是幾邊形?

 。2)一個(gè)多邊形的內(nèi)角和是1440,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是( )。

  3、討論回答:一個(gè)多邊形的內(nèi)角和比四邊形的內(nèi)角和多540,并且這個(gè)多邊形的各個(gè)內(nèi)角都相等,這個(gè)多邊形每個(gè)內(nèi)角等于多少度?

  (四)概括存儲(chǔ)

  學(xué)生自己歸納總結(jié):

  1、多邊形內(nèi)角和公式

  2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問(wèn)題

  3、用數(shù)形結(jié)合的思想解決問(wèn)題

 。ㄎ澹┳鳂I(yè):

  練習(xí)冊(cè)第93頁(yè)1、2、3

  八、教學(xué)反思:

  1、教的轉(zhuǎn)變

  本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫(huà)圖、測(cè)量發(fā)現(xiàn)結(jié)論后,利用幾何畫(huà)板直觀地展示,激發(fā)學(xué)生自覺(jué)探究數(shù)學(xué)問(wèn)題,體驗(yàn)發(fā)現(xiàn)的樂(lè)趣。

  2、學(xué)的轉(zhuǎn)變

  學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。

  3、課堂氛圍的轉(zhuǎn)變

  整節(jié)課以“流暢、開(kāi)放、合作、隱導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維減少干預(yù),教學(xué)過(guò)程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問(wèn)題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。

  初中數(shù)學(xué)教案 13

  一、教學(xué)目標(biāo)

  1、了解二次根式的意義;

  2、掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問(wèn)題;

  3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;

  4、通過(guò)二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;

  5、通過(guò)二次根式性質(zhì)和的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):

  (1)二次根的意義;

 。2)二次根式中字母的取值范圍。

  難點(diǎn):確定二次根式中字母的取值范圍。

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合。

  四、教學(xué)過(guò)程

 。ㄒ唬⿵(fù)習(xí)提問(wèn)

  1、什么叫平方根、算術(shù)平方根?

  2、說(shuō)出下列各式的意義,并計(jì)算

  (二)引入新課

  新課:二次根式

  定義:式子叫做二次根式。

  對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問(wèn)題,引導(dǎo)學(xué)生總結(jié):

 。1)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?

  若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。

 。2)是二次根式,而,提問(wèn)學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態(tài)”。請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。

  例1當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?

  例2 x是怎樣的實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?

  解:略。

  說(shuō)明:這個(gè)問(wèn)題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x—3是非負(fù)數(shù),式子有意義。

  例3當(dāng)字母取何值時(shí),下列各式為二次根式:

  分析:由二次根式的定義,被開(kāi)方數(shù)必須是非負(fù)數(shù),把問(wèn)題轉(zhuǎn)化為解不等式。

  解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。

  (2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。

  (3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。

 。4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時(shí),是二次根式。

  例4下列各式是二次根式,求式子中的字母所滿足的`條件:

  分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開(kāi)方數(shù)都大于等于零。

  解:(1)由2a+3≥0,得。

 。2)由,得3a—1>0,解得。

 。3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。

 。4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。

  初中數(shù)學(xué)教案 14

  教學(xué)目標(biāo):

  1、經(jīng)歷收集數(shù)據(jù)、分析數(shù)據(jù)的活動(dòng),體會(huì)統(tǒng)計(jì)在實(shí)際生活中的應(yīng)用。

  2、收集統(tǒng)計(jì)在生活中應(yīng)用的例子,整理收集數(shù)據(jù)的方法。

  3、在解決問(wèn)題的過(guò)程中,整理所學(xué)習(xí)的統(tǒng)計(jì)圖,和統(tǒng)計(jì)量,能用自己的語(yǔ)言描述過(guò)各種統(tǒng)計(jì)圖的特點(diǎn),掌握整理收集數(shù)據(jù)的方法。

  教學(xué)過(guò)程:

  一、課前預(yù)習(xí),出示預(yù)習(xí)提綱:

  1、我們學(xué)習(xí)了哪幾種統(tǒng)計(jì)圖?

  2、這幾種統(tǒng)計(jì)圖各有什么特點(diǎn)?

  3、概率的知識(shí)有哪些?

  二、展示與交流

  (一)提出問(wèn)題

  1、(出示問(wèn)題情境)我們班要和希望小學(xué)的六(1)班建立手拉手班級(jí),怎么樣向他們介紹我們班的一些情況呢?(指名回答)

  2、師:先獨(dú)立列出幾個(gè)你想調(diào)查的.問(wèn)題。(寫(xiě)在練習(xí)本上)

  3、四人小組交流,整理出你們小組都比較感興趣的,又能實(shí)施的3個(gè)問(wèn)題。(小組匯報(bào)、交流、整理)

  4、接著全班匯報(bào)交流(師羅列在黑板上)

  師:大家想調(diào)查這么多的問(wèn)題,現(xiàn)在我們班選擇其中有價(jià)值又能實(shí)施的問(wèn)題進(jìn)行調(diào)查。(師根據(jù)生的回答進(jìn)行歸納、整理)

  (二)收集數(shù)據(jù)和整理數(shù)據(jù)

  1、師:調(diào)查這幾個(gè)問(wèn)題,你需要收集哪些數(shù)據(jù)?怎么樣收集這些數(shù)據(jù)?與同伴交流收集數(shù)據(jù)的方法。

  2、師:開(kāi)展實(shí)際調(diào)查的話,如何進(jìn)行調(diào)查比較有效?在調(diào)查的時(shí)候,大家需要注意什么?

  (三)開(kāi)展調(diào)查

  1、針對(duì)學(xué)生提出的某個(gè)問(wèn)題,先組織小組有效的開(kāi)展收集和整理數(shù)據(jù)的活動(dòng),然后把數(shù)據(jù)記錄下來(lái),并進(jìn)行整理。

  2、師:誰(shuí)來(lái)說(shuō)一說(shuō)你們小組是怎么樣分工,怎么樣調(diào)查和記錄數(shù)據(jù)的?(指名匯報(bào))

  3、全班匯總、整理、歸納各小組數(shù)據(jù)。(板書(shū))

  4、師:分析上面的數(shù)據(jù),你能得到哪些信息?

  5、師:根據(jù)整理的數(shù)據(jù),想一想繪制什么統(tǒng)計(jì)圖比較好呢?

  6、師:根據(jù)這些信息,你還能提出什么數(shù)學(xué)問(wèn)題?

  (四)回顧統(tǒng)計(jì)活動(dòng)

  1、師:在剛才的統(tǒng)計(jì)活動(dòng),我們都做了些什么?你能按順序說(shuō)一說(shuō)嗎?

  師板書(shū):提出問(wèn)題——收集數(shù)據(jù)——整理數(shù)據(jù)——分析數(shù)據(jù)——作出決策。

  2、收集在生活中應(yīng)用統(tǒng)計(jì)的例子,并說(shuō)說(shuō)這些例子中的數(shù)據(jù)告訴人們哪些信息。(全班交流)

  指名同學(xué)匯報(bào),其他同學(xué)注意聽(tīng),并指出這個(gè)同學(xué)舉的例子中你可以獲得什么信息?

  3、結(jié)合生活中的例子說(shuō)說(shuō)收集數(shù)據(jù)有哪些方法?

  (1)先讓學(xué)生在小組內(nèi)交流,引導(dǎo)學(xué)生結(jié)合例子(充分利用第2題中收集來(lái)

  的實(shí)例)來(lái)說(shuō)說(shuō)自己的方法。

  (2)師歸納:常用的收集數(shù)據(jù)的方法有:查閱資料、詢問(wèn)他人、調(diào)查實(shí)驗(yàn)等。

  4、師:同學(xué)們,我們已經(jīng)對(duì)統(tǒng)計(jì)表和統(tǒng)計(jì)圖進(jìn)行了系統(tǒng)的學(xué)習(xí),回憶一下我們已經(jīng)學(xué)過(guò)了哪些統(tǒng)計(jì)圖,對(duì)這些統(tǒng)計(jì)圖,你已經(jīng)知道了哪些知識(shí)?

  初中數(shù)學(xué)教案 15

  教材分析

  立體圖形的翻折問(wèn)題是高二《代數(shù)》(下)中立體幾何的一個(gè)學(xué)習(xí)內(nèi)容,它融會(huì)貫通于各種立體幾何和幾何體中,對(duì)學(xué)生進(jìn)一步理解立體圖形起著至關(guān)重要的作用。立體圖形的翻折是從學(xué)生生活周圍熟悉的物體入手,使學(xué)生進(jìn)一步認(rèn)識(shí)立體圖形于平面圖形的關(guān)系;不僅要讓學(xué)生了解幾何體可由平面圖形折疊而成,更重要的是讓學(xué)生通過(guò)觀察、思考和自己動(dòng)手操作、經(jīng)歷和體驗(yàn)圖形的變化過(guò)程,使學(xué)生了解研究立體圖形的方法。

  教學(xué)重點(diǎn)

  了解平面圖形于折疊后的立體圖形之間的關(guān)系,找到變化過(guò)程中的不變量。

  教學(xué)難點(diǎn)

  轉(zhuǎn)化思想的運(yùn)用及發(fā)散思維的培養(yǎng)。

  學(xué)生分析

  學(xué)生在前面已經(jīng)對(duì)一些簡(jiǎn)單幾何體有了一定的認(rèn)識(shí),對(duì)于求解空間角及空間距離已具備了一定的能力,并且在班級(jí)中已初步形成合作交流,敢于探索與實(shí)踐的良好習(xí)慣。學(xué)生間相互評(píng)價(jià)、相互提問(wèn)的互動(dòng)的.氣氛較濃。

  設(shè)計(jì)理念

  根據(jù)教育課程改革的具體目標(biāo),結(jié)合“注重開(kāi)放與生成,構(gòu)建充滿生命活力的課堂教學(xué)運(yùn)行體系”的要求,改變課程過(guò)于注重知識(shí)傳授的傾向,強(qiáng)調(diào)形成積極生動(dòng)的學(xué)習(xí)態(tài)度,關(guān)注學(xué)生的學(xué)習(xí)興趣和經(jīng)驗(yàn),實(shí)施開(kāi)放式教學(xué),讓學(xué)生主動(dòng)參與學(xué)習(xí)活動(dòng),并引導(dǎo)學(xué)生在課堂活動(dòng)中感悟知識(shí)的生成、發(fā)展與變化。

  教學(xué)目標(biāo)

  1、使學(xué)生掌握翻折問(wèn)題的解題方法,并會(huì)初步應(yīng)用。

  2、培養(yǎng)學(xué)生的動(dòng)手實(shí)踐能力。在實(shí)踐過(guò)程中,使學(xué)生提高對(duì)立體圖形的分析能力,并在設(shè)疑的同時(shí)培養(yǎng)學(xué)生的發(fā)散思維。

  3、通過(guò)平面圖形與折疊后的立體圖形的對(duì)比,向?qū)W生滲透事物間的變化與聯(lián)系觀點(diǎn),在解題過(guò)程中,使學(xué)生理解,將立體圖形中的問(wèn)題化歸到平面圖形中去解決的轉(zhuǎn)化思想。

  教學(xué)流程

  一、創(chuàng)設(shè)問(wèn)題情境,引導(dǎo)學(xué)生觀察、設(shè)想、導(dǎo)入課題。

  1、如圖(圖略),是一個(gè)正方體的展開(kāi)圖,在原正方體中,有下列命題

 。1)AB與EF所在直線平行

 。2)AB與CD所在直線異面

 。3)MN與EF所在直線成60度

 。4)MN與CD所在直線互相垂直其中正確命題的序號(hào)是

  2、引入課題----翻折

  二、學(xué)生通過(guò)直觀感知、操作確認(rèn)等實(shí)踐活動(dòng),加強(qiáng)對(duì)圖形的認(rèn)識(shí)和感受(引導(dǎo)學(xué)生在解題的過(guò)程中如何突破難點(diǎn),從而體現(xiàn)在平面圖形中求解一些不變量對(duì)于解空間問(wèn)題的重要性)。

  1、給學(xué)生一個(gè)展示自我的空間和舞臺(tái),讓學(xué)生自己講解。教師根據(jù)學(xué)生的講解進(jìn)一步提出問(wèn)題。

  (1)線段AE與EF的夾角為什么不是60度呢?

 。2)AE與FG所成角呢?

 。3)AE與GC所成角呢?

  (4)在此正四棱柱上若有一小蟲(chóng)從A點(diǎn)爬到C點(diǎn)最短路徑是什么?經(jīng)過(guò)各面呢?

 。ㄍㄟ^(guò)對(duì)發(fā)散問(wèn)題的提出培養(yǎng)學(xué)生的培養(yǎng)精神及轉(zhuǎn)化的教學(xué)思想方法,讓學(xué)生體會(huì)折疊圖與展開(kāi)圖的不同應(yīng)用。)

  2、讓學(xué)生觀察電腦演示折疊過(guò)程后,再親自動(dòng)手折疊,針對(duì)問(wèn)題做出回答。

 。1)E、F分別處于G1G2、G2G3的什么位置?

  (2)選擇哪種擺放方式更利于求解體積呢?

  (3)如何求G點(diǎn)到面PEF的距離呢?

 。4)PG與面PEF所成角呢?

 。5)面GEF與面PEF所成角呢?

 。▽W(xué)生會(huì)發(fā)現(xiàn)這幾個(gè)問(wèn)題可在同一個(gè)直角三角形中找到答案,然后讓學(xué)生在折紙中找到這個(gè)三角形的位置,既而發(fā)現(xiàn)折疊過(guò)程中的不變量。)

  3、演示MN的運(yùn)動(dòng)過(guò)程,讓學(xué)生觀察分析解題過(guò)程強(qiáng)調(diào)證PN垂直AB的困難性。與學(xué)生共同品位解出這道2002高考題的喜悅的同時(shí),引導(dǎo)學(xué)生用上題的思路能否更快捷地解出此題呢?

 。▽W(xué)生大膽想象,并通過(guò)模型制作確認(rèn)想象結(jié)果的正確性,從而開(kāi)辟一條簡(jiǎn)捷的翻折思想解題思路。)

  三、小結(jié)

  1、畫(huà)平面圖,并折前圖與折后圖中的字母盡量保持一致。

  2、尋找立體圖形中的不變量到平面圖形中求解是關(guān)鍵。

  3、注意培養(yǎng)轉(zhuǎn)化思想和發(fā)散思維。

 。ㄍㄟ^(guò)提問(wèn)方式引導(dǎo)學(xué)生小結(jié)本節(jié)主要知識(shí)及學(xué)習(xí)活動(dòng),養(yǎng)成學(xué)習(xí)、總結(jié)、學(xué)習(xí)的良好學(xué)習(xí)習(xí)慣,發(fā)散自我評(píng)價(jià)的作用,培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力。)

  四、課外活動(dòng)

  1、完成課上未解決的問(wèn)題。

  2、對(duì)與1題折成正三棱柱結(jié)果會(huì)怎樣?對(duì)于2題改變E、F兩點(diǎn)位置剪成正三棱柱呢?

 。ㄍㄟ^(guò)課外活動(dòng)學(xué)習(xí)本節(jié)知識(shí)內(nèi)容,培養(yǎng)學(xué)生的發(fā)散思維。)

  課后反思

  本課設(shè)計(jì)中,有梯度性的先安排三個(gè)小題,讓學(xué)生經(jīng)歷先動(dòng)手、思考、預(yù)習(xí)這一學(xué)習(xí)過(guò)程,然后在課堂上給學(xué)生一個(gè)充分展示自我的空間,并且適時(shí)發(fā)問(wèn)的同時(shí)幫助學(xué)生找到解決方法。歸納總結(jié)解翻折問(wèn)題的技巧和作為解題方法的優(yōu)越性。在實(shí)施開(kāi)放式教學(xué)的過(guò)程中,注重引導(dǎo)學(xué)生在課堂活動(dòng)過(guò)程中感悟知識(shí)的生成、發(fā)展與變化,培養(yǎng)學(xué)生主動(dòng)探索、敢于實(shí)踐、善于發(fā)現(xiàn)的科學(xué)精神以及合作交流的精神和創(chuàng)新意識(shí),將創(chuàng)新的教材、創(chuàng)新的教法與創(chuàng)新的課堂環(huán)境有機(jī)地結(jié)合起來(lái),將學(xué)生自主學(xué)習(xí)與創(chuàng)新意識(shí)的培養(yǎng)落到實(shí)處。

【初中數(shù)學(xué)教案】相關(guān)文章:

初中數(shù)學(xué)教案02-21

初中數(shù)學(xué)教案[經(jīng)典]02-21

人教版初中數(shù)學(xué)教案07-17

初中數(shù)學(xué)教案模板11-02

初中數(shù)學(xué)教案最新09-05

角初中數(shù)學(xué)教案12-30

初中數(shù)學(xué)教案【熱門】11-20

【精】初中數(shù)學(xué)教案11-21

【熱】初中數(shù)學(xué)教案11-15

初中數(shù)學(xué)教案【精】11-19