初中數(shù)學(xué)教案【薦】
作為一名為他人授業(yè)解惑的教育工作者,就不得不需要編寫教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。那要怎么寫好教案呢?下面是小編精心整理的初中數(shù)學(xué)教案,歡迎閱讀與收藏。
初中數(shù)學(xué)教案1
教學(xué)目標(biāo):
1、進(jìn)一步理解函數(shù)的概念,能從簡單的實(shí)際事例中,抽象出函數(shù)關(guān)系,列出函數(shù)解析式;
2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.
3、會求函數(shù)值,并體會自變量與函數(shù)值間的對應(yīng)關(guān)系.
4、使學(xué)生掌握解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法.
5、通過函數(shù)的教學(xué)使學(xué)生體會到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動變化著的.
教學(xué)重點(diǎn):了解函數(shù)的意義,會求自變量的取值范圍及求函數(shù)值.
教學(xué)難點(diǎn):函數(shù)概念的抽象性.
教學(xué)過程:
(一)引入新課:
上一節(jié)課我們講了函數(shù)的概念:一般地,設(shè)在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù).
生活中有很多實(shí)例反映了函數(shù)關(guān)系,你能舉出一個,并指出式中的自變量與函數(shù)嗎?
1、學(xué)校計劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個)的關(guān)系.
2、為迎接新年,班委會計劃購買100元的小禮物送給同學(xué),求所能購買的總數(shù)n(個)與單價(a)元的關(guān)系.
解:1、y=30n
y是函數(shù),n是自變量
2、n是函數(shù),a是自變量.
(二)講授新課
剛才所舉例子中的函數(shù),都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示函數(shù)時,要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).
例1、求下列函數(shù)中自變量x的取值范圍.
。1)(2)
(3)(4)
。5)(6)
分析:在(1)、(2)中,x取任意實(shí)數(shù),與都有意義.
(3)小題的是一個分式,分式成立的條件是分母不為0.這道題的分母是,因此要求.
同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.
第(5)小題,是二次根式,二次根式成立的條件是被開方數(shù)大于、等于零.的被開方數(shù)是.
同理,第(6)小題也是二次根式,是被開方數(shù),
小結(jié):從上面的例題中可以看出函數(shù)的解析式是整數(shù)時,自變量可取全體實(shí)數(shù);函數(shù)的'解析式是分式時,自變量的取值應(yīng)使分母不為零;函數(shù)的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)大于、等于零.
注意:有些同學(xué)沒有真正理解解析式是分式時,自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可.教師可將解題步驟設(shè)計得細(xì)致一些.先提問本題的分母是什么?然后再要求分式的分母不為零.求出使函數(shù)成立的自變量的取值范圍.二次根式的問題也與次類似.
但象第(4)小題,有些同學(xué)會犯這樣的錯誤,將答案寫成或.在解一元二次方程時,方程的兩根用“或者”聯(lián)接,在這里就直接拿過來用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說明這里與是并且的關(guān)系.即2與-1這兩個值x都不能取.
例2、自行車保管站在某個星期日保管的自行車共有3500輛次,其中變速車保管費(fèi)是每輛一次0.5元,一般車保管費(fèi)是每次一輛0.3元.
。1)若設(shè)一般車停放的輛次數(shù)為x,總的保管費(fèi)收入為y元,試寫出y關(guān)于x的函數(shù)關(guān)系式;
。2)若估計前來停放的3500輛次自行車中,變速車的輛次不小于25%,但不大于40%,試求該保管站這個星期日收入保管費(fèi)總數(shù)的范圍.
解:(1)
。▁是正整數(shù),
(2)若變速車的輛次不小于25%,但不大于40%,
則收入在1225元至1330元之間
總結(jié):對于反映實(shí)際問題的函數(shù)關(guān)系,應(yīng)使得實(shí)際問題有意義.這樣,就要求聯(lián)系實(shí)際,具體問題具體分析.
對于函數(shù),當(dāng)自變量時,相應(yīng)的函數(shù)y的值是.60叫做這個函數(shù)當(dāng)時的函數(shù)值.
例3、求下列函數(shù)當(dāng)時的函數(shù)值:
。1)————(2)—————
。3)————(4)——————
注:本例既鍛煉了學(xué)生的計算能力,又創(chuàng)設(shè)了情境,讓學(xué)生體會對于x的每一個值,y都有唯一確定的值與之對應(yīng).以此加深對函數(shù)的理解.
。ǘ┬〗Y(jié):
這節(jié)課,我們進(jìn)一步地研究了有關(guān)函數(shù)的概念.在研究函數(shù)關(guān)系時首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應(yīng)的函數(shù)值.另外,對于反映實(shí)際問題的函數(shù)關(guān)系,要具體問題具體分析.
作業(yè):習(xí)題13.2A組2、3、5
今天的內(nèi)容就介紹到這里了。
初中數(shù)學(xué)教案2
一、目的要求
1、使學(xué)生初步理解一次函數(shù)與正比例函數(shù)的概念。
2、使學(xué)生能夠根據(jù)實(shí)際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。
二、內(nèi)容分析
1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學(xué)習(xí)函數(shù)的,前面三小節(jié),先學(xué)習(xí)函數(shù)的概念與表示法,這是為學(xué)習(xí)后面的幾種具體的函數(shù)作準(zhǔn)備的,從本節(jié)開始,將依次學(xué)習(xí)一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關(guān)知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個順序講述的,通過這些具體函數(shù)的學(xué)習(xí),學(xué)生可以加深對函數(shù)意義、函數(shù)表示法的認(rèn)識,并且,結(jié)合這些內(nèi)容,學(xué)生還會逐步熟悉函數(shù)的知識及有關(guān)的數(shù)學(xué)思想方法在解決實(shí)際問題中的應(yīng)用。
2、舊教材在講幾個具體的函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當(dāng)照顧了學(xué)生在小學(xué)數(shù)學(xué)中學(xué)了正反比例關(guān)系的知識,注意了中小學(xué)的銜接,新教材則是安排先學(xué)習(xí)一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學(xué)習(xí)反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學(xué)生由易到難的認(rèn)識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡單的,相對來說,反比例函數(shù)就要復(fù)雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學(xué)習(xí)反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學(xué)習(xí)效益,又便于學(xué)生了解正比例函數(shù)與一次函數(shù)的關(guān)系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。
3、“函數(shù)及其圖象”這一章的重點(diǎn)是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進(jìn)行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對函數(shù)的研究方法有一個初步的認(rèn)識與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。
三、教學(xué)過程
復(fù)習(xí)提問:
1、什么是函數(shù)?
2、函數(shù)有哪幾種表示方法?
3、舉出幾個函數(shù)的例子。
新課講解:
可以選用提問時學(xué)生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學(xué)生觀察這些例子(實(shí)際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導(dǎo)學(xué)生思考:
(1)這些式子表示的是什么關(guān)系?(在學(xué)生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)
(2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學(xué)生分清后,可指出,式子中等號左邊的`y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)
(3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關(guān)于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設(shè)問,最后給出一次函數(shù)的定義。
一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。
對這個定義,要注意:
(1)x是變量,k,b是常數(shù);
(2)k≠0 (當(dāng)k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點(diǎn),不一定向?qū)W生講述。)
由一次函數(shù)出發(fā),當(dāng)常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。
在講述正比例函數(shù)時,首先,要注意適當(dāng)復(fù)習(xí)小學(xué)學(xué)過的正比例關(guān)系,小學(xué)數(shù)學(xué)是這樣陳述的:
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
寫成式子是(一定)
需指出,小學(xué)因?yàn)闆]有學(xué)過負(fù)數(shù),實(shí)際的例子都是k>0的例子,對于正比例函數(shù),k也為負(fù)數(shù)。
其次,要注意引導(dǎo)學(xué)生找出一次函數(shù)與正比例函數(shù)之間的關(guān)系:正比例函數(shù)是特殊的一次函數(shù)。
課堂練習(xí):
教科書13、4節(jié)練習(xí)第1題.
初中數(shù)學(xué)教案3
三維目標(biāo)
一、知識與技能
1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.
2.能綜合利用物理杠桿知識、反比例函數(shù)的知識解決一些實(shí)際問題.
二、過程與方法
1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.
2. 體會數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識,提高運(yùn)用代數(shù)方法解決問題的能力.
三、情感態(tài)度與價值觀
1.積極參與交流,并積極發(fā)表意見.
2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.
教學(xué)重點(diǎn)
掌握從物理問題中建構(gòu)反比例函數(shù)模型.
教學(xué)難點(diǎn)
從實(shí)際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識分析物理問題,建立函數(shù)模型,教學(xué)時注意分析過程,滲透數(shù)形結(jié)合的思想.
教具準(zhǔn)備
多媒體課件.
教學(xué)過程
一、創(chuàng)設(shè)問題情境,引入新課
活動1
問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時,電流I=2安培.
(1)求I與R之間的函數(shù)關(guān)系式;
(2)當(dāng)電流I=0.5時,求電阻R的值.
設(shè)計意圖:
運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力.
師生行為:
可由學(xué)生獨(dú)立思考,領(lǐng)會反比例函數(shù)在物理學(xué)中的綜合應(yīng)用.
教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識的引導(dǎo).
師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的一對對應(yīng)值)得到字母系數(shù)k的值.
生:(1)解:設(shè)I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 當(dāng)I=0.5時,R=10I=100.5 =20(歐姆).
師:很好!“給我一個支點(diǎn),我可以把地球撬動.”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?
生:這是古希臘科學(xué)家阿基米德的名言.
師:是的.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;
阻力×阻力臂=動力×動力臂(如下圖)
下面我們就來看一例子.
二、講授新課
活動2
小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動力F與動力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動力臂為1.5米時,撬動石頭至少需要多大的力?
(2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?
設(shè)計意圖:
物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用.
師生行為:
先由學(xué)生根據(jù)“杠桿定律”解決上述問題.
教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系.
教師在此活動中應(yīng)重點(diǎn)關(guān)注:
、賹W(xué)生能否主動用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問題,從而建立與反比例函數(shù)的關(guān)系;
、趯W(xué)生能否面對困難,認(rèn)真思考,尋找解題的途徑;
、蹖W(xué)生能否積極主動地參與數(shù)學(xué)活動,對數(shù)學(xué)和物理有著濃厚的興趣.
師:“撬動石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.
生:解:(1)根據(jù)“杠桿定律” 有
Fl=1200×0.5.得F =600l
當(dāng)l=1.5時,F(xiàn)=6001.5 =400.
因此,撬動石頭至少需要400牛頓的力.
(2)若想使動力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有
Fl=600,
l=600F .
當(dāng)F=400×12 =200時,
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動力臂至少要如長1.5米.
生:也可用不等式來解,如下:
Fl=600,F(xiàn)=600l .
而F≤400×12 =200時.
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過400牛頓的.一半,則動力臂至少要加長1.5米.
生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出.
師:很棒!請同學(xué)們下去親自畫出圖象完成,現(xiàn)在請同學(xué)們思考下列問題:
用反比例函數(shù)的知識解釋:在我們使用橇棍時,為什么動力臂越長越省力?
生:因?yàn)樽枇妥枇Ρ鄄蛔,設(shè)動力臂為l,動力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)
根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時,在第一象限F隨l的增大而減小,即動力臂越長越省力.
師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛.例如在解決經(jīng)濟(jì)預(yù)算問題中的應(yīng)用.
活動3
問題:某地上年度電價為0.8元,年用電量為1億度,本年度計劃將電價調(diào)至0.55~0.75元之間,經(jīng)測算,若電價調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當(dāng)x=0.65元時,y=0.8.(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價0.3元,電價調(diào)至0.6元,請你預(yù)算一下本年度電力部門的純收人多少?
設(shè)計意圖:
在生活中各部門,經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問題,有時關(guān)系到因素之間是反比例函數(shù)關(guān)系,對于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個具體問題.
師生行為:
由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成.
教師應(yīng)給予“學(xué)困生”以一定的幫助.
生:解:(1)∵y與x -0.4成反比例,
∴設(shè)y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數(shù)關(guān)系為y=15x-2
(2)根據(jù)題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時,y=0.8得出字母系數(shù)的值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動4
一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時二氧化碳?xì)怏w的體積V的值.
設(shè)計意圖:
進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系.
師生行為
由學(xué)生獨(dú)立完成,教師講評.
師:若要求出ρ=1.1 kg/m3時,V的值,首先V和ρ的函數(shù)關(guān)系.
生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ .
生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以當(dāng)密度ρ=1. 1 kg/m3時二氧化碳?xì)怏w的氣體為900m3.
四、課時小結(jié)
活動5
你對本節(jié)內(nèi)容有哪些認(rèn)識?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得.
設(shè)計意圖:
這種形式的小結(jié),激發(fā)了學(xué)生的主動參與意識,調(diào)動了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗(yàn)機(jī)會,并為程度不同的學(xué)生提供了充分展示自己的機(jī)會,尊重學(xué)生的個體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性.
師生行為:
學(xué)生可分小組活動,在小組內(nèi)交流收獲, 然后由小組代表在全班交流.
教師組織學(xué)生小結(jié).
反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ).用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系.
板書設(shè)計
17.2 實(shí)際問題與反比例函數(shù)(三)
1.
2.用反比例函數(shù)的知識解釋:在我們使 用撬棍時,為什么動 力臂越長越省力?
設(shè)阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數(shù)且k>0).動力和動力臂分別為F,l.則根據(jù)杠桿定理,
Fl=k 即F=kl (k>0且k為常數(shù)).
由此可知F是l的反比例函數(shù),并且當(dāng)k>0時,F(xiàn)隨l的增大而減。
活動與探究
學(xué)校準(zhǔn)備在校園內(nèi)修建一個矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示.
(1)綠化帶面積是多少?你能寫出這一函數(shù)表達(dá)式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?
x(m) 10 20 30 40
y(m)
過程:點(diǎn)A(40,10)在反比例函數(shù)圖象上說明點(diǎn)A的橫縱坐標(biāo)滿足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值.
結(jié)果:(1)綠化帶面積為10×40=400(m2)
設(shè)該反比例函數(shù)的表達(dá)式為y=kx ,
∵圖象經(jīng)過點(diǎn)A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函數(shù)表達(dá)式為y=400x .
(2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長不超過40m,則它的寬應(yīng)大于等于10m。
初中數(shù)學(xué)教案4
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點(diǎn)
1.掌握的三要素,能正確畫出.
2.能將已知數(shù)在上表示出來,能說出上已知點(diǎn)所表示的數(shù).
(二)能力訓(xùn)練點(diǎn)
1.使學(xué)生受到把實(shí)際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識.
2.對學(xué)生滲透數(shù)形結(jié)合的思想方法.
(三)德育滲透點(diǎn)
使學(xué)生初步了解數(shù)學(xué)來源于實(shí)踐,反過來又服務(wù)于實(shí)踐的辯證唯物主義觀點(diǎn).
(四)美育滲透點(diǎn)
通過畫,給學(xué)生以圖形美的教育,同時由于數(shù)形的結(jié)合,學(xué)生會得到和諧美的享受.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法.
2.學(xué)生學(xué)法:動手畫,動腦概括的三要素,動手、動腦做練習(xí).
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):正確掌握畫法和用上的點(diǎn)表示有理數(shù).
2.難點(diǎn):有理數(shù)和上的點(diǎn)的對應(yīng)關(guān)系。
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
電腦、投影儀、自制膠片.
六、師生互動活動設(shè)計
師生同步畫,學(xué)生概括三要素,師出示投影,生動手動腦練習(xí)
七、教學(xué)步驟
(一)創(chuàng)設(shè)情境,引入新課
師:大家知識溫度計的用途是什么?
生:溫度計可以測量溫度
(出示投影1)
三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
我們能否用類似溫度計的圖形表示有理數(shù)呢?
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—(板書課題).
【教法說明】從溫度計用標(biāo)有讀數(shù)的刻度來表示溫度的高低這個事實(shí)出發(fā),引出本節(jié)課所要學(xué)的內(nèi)容—.再從溫度計這個實(shí)物形象抽象出來研究.既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又使學(xué)生受到把實(shí)際問題抽象成數(shù)學(xué)問題的訓(xùn)練,培養(yǎng)了用數(shù)學(xué)的意識.
(二)探索新知,講授新課
1.的畫法
與溫度計類似,可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的.點(diǎn)表示正數(shù)、負(fù)數(shù)和零,具體做法如下:
第一步:畫直線定原點(diǎn)原點(diǎn)表示0(相當(dāng)于溫度計上的0℃).
第二步:規(guī)定從原點(diǎn)向右的為正方向那么相反的方向(從原點(diǎn)向左)則為負(fù)方向.(相當(dāng)于溫度計上℃以上為正,0℃以下為負(fù)).
第三步:選擇適當(dāng)?shù)拈L度為單位長度(相當(dāng)于溫度計上每1℃占1小格的長度).
【教法說明】教師邊講解邊示范,學(xué)生跟著一起畫圖.培養(yǎng)學(xué)生動手、動腦和實(shí)際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學(xué)生在認(rèn)知過程中領(lǐng)悟這種思想方法.
讓學(xué)生觀察畫好的直線,思考以下問題:
(出示投影1)
(1)原點(diǎn)表示什么數(shù)?
(2)原點(diǎn)右方表示什么數(shù)?原點(diǎn)左方表示什么數(shù)?
(3)表示+2的點(diǎn)在什么位置?表示-1的點(diǎn)在什么位置?
(4)原點(diǎn)向右0.5個單位長度的A點(diǎn)表示什么數(shù)?原點(diǎn)向左個單位長度的B點(diǎn)表示什么數(shù)?
根據(jù)老師畫圖的步驟,學(xué)生思考在一條水平的直線上都畫出什么?然后歸納出的定義。
學(xué)生活動:同學(xué)們思考,并要求同桌相互敘述,互相糾正補(bǔ)充,語句通順后舉手回答.大家思考準(zhǔn)備更正或補(bǔ)充。
初中數(shù)學(xué)教案5
教學(xué)目標(biāo):
1、理解并掌握三角形中位線的概念、性質(zhì),會利用三角形中位線的性質(zhì)解決有關(guān)問題。
2、經(jīng)歷探索三角形中位線性質(zhì)的過程,讓學(xué)生實(shí)現(xiàn)動手實(shí)踐、自主探索、合作交流的學(xué)習(xí)過程。
3、通過對問題的探索研究,培養(yǎng)學(xué)生分析問題和解決問題的能力以及思維的靈活性。
4、培養(yǎng)學(xué)生大膽猜想、合理論證的科學(xué)精神。
教學(xué)重點(diǎn):
探索并運(yùn)用三角形中位線的`性質(zhì)。
教學(xué)難點(diǎn):
運(yùn)用轉(zhuǎn)化思想解決有關(guān)問題。
教學(xué)方法:
創(chuàng)設(shè)情境——建立數(shù)學(xué)模型——應(yīng)用——拓展提高
教學(xué)過程:
情境創(chuàng)設(shè):測量不可達(dá)兩點(diǎn)距離。
探索活動:
活動一:剪紙拼圖。
操作:怎樣將一張三角形紙片剪成兩部分,使分成的兩部分能拼成一個平行四邊形。
觀察、猜想: 四邊形BCFD是什么四邊形。
探索: 如何說明四邊形BCFD是平行四邊形?
活動二:探索三角形中位線的性質(zhì)。
應(yīng)用
練習(xí)及解決情境問題。
例題教學(xué)
操作——猜想——驗(yàn)證
拓展:數(shù)學(xué)實(shí)驗(yàn)室
小結(jié):布置作業(yè)。
初中數(shù)學(xué)教案6
一、課題引入
為了讓學(xué)生更好地理解正數(shù)與負(fù)數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來看,微積分的基礎(chǔ)是實(shí)數(shù)理論,實(shí)數(shù)的基礎(chǔ)是有理數(shù),而有理數(shù)的基礎(chǔ)則是自然數(shù).自然數(shù)為數(shù)學(xué)結(jié)構(gòu)提供了堅(jiān)實(shí)的基礎(chǔ).
對于“數(shù)的發(fā)展”(也即“數(shù)的擴(kuò)充”),有著兩種不同的認(rèn)知體系.一是數(shù)的自然擴(kuò)充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對數(shù)的認(rèn)識的歷史發(fā)展進(jìn)程;另一是數(shù)的邏輯擴(kuò)充過程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學(xué)家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學(xué)中許多思想方法.
二、課題研究
在實(shí)際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關(guān),而且還含有上升與下降、收入與支出等實(shí)際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實(shí)際意義是不同的.
為了準(zhǔn)確表達(dá)諸如此類的一些具有相反意義的量,僅用小學(xué)學(xué)過的正整數(shù)、正分?jǐn)?shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數(shù)來表達(dá)的.因此,為了準(zhǔn)確表達(dá)支出5000元,就有必要引入了一種新數(shù)—負(fù)數(shù).
我們把所學(xué)過的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數(shù),讀作“正5”.
在正數(shù)的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構(gòu)成的數(shù)統(tǒng)稱為負(fù)數(shù).“-5”讀作“負(fù)5”,“-5000”讀作“負(fù)5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數(shù)量就有了不同的表達(dá)方式.
利用正數(shù)與負(fù)數(shù)可以準(zhǔn)確地表達(dá)或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機(jī)器零件的實(shí)際尺寸比設(shè)計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機(jī)器零件的實(shí)際尺寸比設(shè)計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊(duì)贏了乙隊(duì)2個球,那么可以把甲隊(duì)的凈勝球數(shù)記作“+2”,把乙隊(duì)的凈勝球數(shù)記作“-2”.
借助實(shí)際例子能夠讓學(xué)生較好地理解為什么要引入負(fù)數(shù),認(rèn)識到負(fù)數(shù)是為了有效表達(dá)與實(shí)際生活相關(guān)的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來的一種“新數(shù)”.
三、鞏固練習(xí)
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調(diào),又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數(shù)或負(fù)數(shù)來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的`量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負(fù)數(shù)來表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當(dāng)天的收盤價與開盤價的漲跌情況如下表:單位:元
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當(dāng)日收盤價
試在表中填寫周二到周五該股票的收盤價.
思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實(shí)際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時的收盤價比當(dāng)天的開盤價降低了0.23元”.
因此,這五天該股票的開盤價與收盤價分別應(yīng)該按如下的方式進(jìn)行計算:
周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊(duì)以主客場的形式進(jìn)行雙循環(huán)比賽,每兩隊(duì)之間都比賽兩場,下表是這三支球隊(duì)的比賽成績,其中左欄表示主隊(duì),上行表示客隊(duì),比分中前后兩數(shù)分別是主客隊(duì)的進(jìn)球數(shù),例如3∶2表示主隊(duì)進(jìn)3球客隊(duì)進(jìn)2球.
初中數(shù)學(xué)教案7
一元一次不等式組
教學(xué)目標(biāo)
1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關(guān)的實(shí)際問題;
2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力;
3、體驗(yàn)數(shù)學(xué)學(xué)習(xí)的樂趣,感受一元一次不等式組在解決實(shí)際問題中的`價值。
教學(xué)難點(diǎn)
正確分析實(shí)際問題中的不等關(guān)系,列出不等式組。
知識重點(diǎn)
建立不等式組解實(shí)際問題的數(shù)學(xué)模型。
探究實(shí)際問題
出示教科書第145頁例2(略)
問:(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?
(2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?
(3)解決這個問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?
師生一起討論解決例2.
歸納小結(jié)
1、教科書146頁“歸納”(略).
2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?
在討論或議論的基礎(chǔ)上老師揭示:
步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。
初中數(shù)學(xué)教案8
一、學(xué)生起點(diǎn)分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?
反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識,但具體研究中
可能要用到反證等思路,對現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時的引導(dǎo)。
二、學(xué)習(xí)任務(wù)分析
本節(jié)課是北師大版數(shù)學(xué)八年級(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理
并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實(shí)際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):
● 知識與技能目標(biāo)
1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過程與方法目標(biāo)
1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;
2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。
● 情感與態(tài)度目標(biāo)
1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;
2.在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心。
教學(xué)重點(diǎn)
理解勾股定理逆定理的具體內(nèi)容。
三、教法學(xué)法
1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證
本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識較強(qiáng),思維活躍,對通過實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)
但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個方面對學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;
(2)從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程;
(3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習(xí)本、文具。
四、教學(xué)過程設(shè)計
本節(jié)課設(shè)計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):
登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內(nèi)容:
情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?
2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?
意圖:
通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。
第二環(huán)節(jié):合作探究
內(nèi)容1:探究
下面有三組數(shù),分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:
1.這三組數(shù)都滿足 嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動小組,每個小組可以任選其中的一組數(shù)。
意圖:
通過學(xué)生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結(jié)論;在活動中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經(jīng)過學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。
從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
內(nèi)容2:說理
提問:有同學(xué)認(rèn)為測量結(jié)果可能有誤差,不同意這個發(fā)現(xiàn)。你認(rèn)為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?
意圖:讓學(xué)生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時明晰結(jié)論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
滿足 的三個正整數(shù),稱為勾股數(shù)。
注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學(xué)有一個直觀的認(rèn)識。
活動3:反思總結(jié)
提問:
1.同學(xué)們還能找出哪些勾股數(shù)呢?
2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?
4.通過今天同學(xué)們合作探究,你能體驗(yàn)出一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?
意圖:進(jìn)一步讓學(xué)生認(rèn)識該定理與勾股定理之間的關(guān)系
第三環(huán)節(jié):小試牛刀
內(nèi)容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。
、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過練習(xí),加強(qiáng)對勾股定理及勾股定理逆定理認(rèn)識及應(yīng)用
效果
每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識。
第四環(huán)節(jié):登高望遠(yuǎn)
內(nèi)容:
1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應(yīng)是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗(yàn),船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?
解答:由題意畫出相應(yīng)的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉(zhuǎn)彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實(shí)際問題,進(jìn)一步鞏固該定理。
效果:
學(xué)生能用自己的語言表達(dá)清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將 作適當(dāng)變形( ),以便于計算。
第五環(huán)節(jié):鞏固提高
內(nèi)容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計算,從而解決問題。
效果:
學(xué)生在對所學(xué)知識有一定的.熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié)出:
1.今天所學(xué)內(nèi)容①會利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);
2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當(dāng)遇見數(shù)據(jù)較大時,要懂得將 作適當(dāng)變形, 便于計算。
意圖:
鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會數(shù)學(xué)的應(yīng)用價值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識。
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。
第七環(huán)節(jié):布置作業(yè)
課本習(xí)題1.4第1,2,4題。
五、教學(xué)反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。
2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動,從中體驗(yàn)任何一個數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學(xué)知識解決實(shí)際問題時,引導(dǎo)學(xué)生善于對公式變形,便于簡便計算。
4.注重對學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5.對于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。
由于本班學(xué)生整體水平較高,因而本設(shè)計教學(xué)容量相對較大,教學(xué)中,應(yīng)注意根據(jù)自己班級學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。
附:板書設(shè)計
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠(yuǎn)
初中數(shù)學(xué)教案9
一、 教學(xué)目標(biāo)
1、 知識與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。
2、 能力與過程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗(yàn)證等能力。
3、 情感與態(tài)度目標(biāo)
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
二、 教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):運(yùn)用有理數(shù)乘法法則正確進(jìn)行計算。
難點(diǎn):有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
三、 教學(xué)過程
1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
。1)教師出示以下問題,學(xué)生以組為單位探索。
以原點(diǎn)為起點(diǎn),規(guī)定向東的方向?yàn)檎较,向西的方向(yàn)樨?fù)方向。
、 2 ×3
2看作向東運(yùn)動2米,×3看作向原方向運(yùn)動3次。
結(jié)果:向 運(yùn)動 米
2 ×3=
、 -2 ×3
-2看作向西運(yùn)動2米,×3看作向原方向運(yùn)動3次。
結(jié)果:向 運(yùn)動 米
-2 ×3=
、 2 ×(-3)
2看作向東運(yùn)動2米,×(-3)看作向反方向運(yùn)動3次。
結(jié)果:向 運(yùn)動 米
2 ×(-3)=
、 (-2) ×(-3)
-2看作向西運(yùn)動2米,×(-3)看作向反方向運(yùn)動3次。
結(jié)果:向 運(yùn)動 米
(-2) ×(-3)=
(2)學(xué)生歸納法則
、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)=( ) 同號得
。-)×(+)=( ) 異號得
。+)×(-)=( ) 異號得
(-)×(-)=( ) 同號得
、诜e的'絕對值等于 。
、廴魏螖(shù)與零相乘,積仍為 。
。3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
3、 運(yùn)用法則計算,鞏固法則。
。1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。
。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
。3)學(xué)生做練習(xí),教師評析。
。4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進(jìn)一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。
初中數(shù)學(xué)教案10
《正方形》教學(xué)設(shè)計
教學(xué)內(nèi)容分析:
、艑W(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
、魄懊鎸W(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。
⑶對本節(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎(chǔ)上進(jìn)行歸納,梳理知識,進(jìn)一步發(fā)展學(xué)生的推理能力。
學(xué)生分析:
、艑W(xué)生在小學(xué)初步認(rèn)識了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗(yàn)與知識基礎(chǔ)。
、茖W(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學(xué)生的思維能力還不成熟,有待于提高。
教學(xué)目標(biāo):
、胖R與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進(jìn)行簡單的說理。
、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運(yùn)用提高學(xué)生的推理能力。
⑶情感態(tài)度與價值觀:在學(xué)習(xí)中體會正方形的完美性,通過活動獲得成功的喜悅與自信。
重點(diǎn):掌握正方形的性質(zhì)與判定,并進(jìn)行簡單的推理。
難點(diǎn):探索正方形的判定,發(fā)展學(xué)生的推理能
教學(xué)方法:類比與探究
教具準(zhǔn)備:可以活動的四邊形模型。
一、教學(xué)分析
(一)教學(xué)內(nèi)容分析
1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》九年級上冊(人民教育出版社)
2.本課教學(xué)內(nèi)容的地位、作用,知識的前后聯(lián)系
《中心對稱圖形》是新人教版九年級數(shù)學(xué)上冊第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對稱和軸對稱圖形”、“旋轉(zhuǎn)和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學(xué)生探索精神和創(chuàng)新意識等方面都有重要意義。
3.本課教學(xué)內(nèi)容的'特點(diǎn),重點(diǎn)分析體現(xiàn)新課程理念的特點(diǎn)
本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質(zhì)。為使學(xué)生感受、理解知識的產(chǎn)生和發(fā)展過程,培養(yǎng)學(xué)生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對稱圖形引出中心對稱圖形的概念;(2)引導(dǎo)學(xué)生觀察、猜想、實(shí)驗(yàn)、歸納、類比等方法探究中心對稱圖形的性質(zhì),(3)通過多媒體演示使學(xué)生對中心對稱圖形的性質(zhì)有直觀的表象。我認(rèn)為這環(huán)環(huán)相扣、層層深入、循序漸進(jìn)的活動過程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。
(二)教學(xué)對象分析
1.學(xué)生所在地區(qū)、學(xué)校及班級的特色
我授課的班級是西安市閻良區(qū)振興中學(xué)九年級一班,作為九年級的學(xué)生,在圖形的對稱方面已經(jīng)積累一些經(jīng)驗(yàn),已經(jīng)具有一定的觀察、猜想、實(shí)驗(yàn)、歸納、類比等研究圖形對稱變換的能力;班級學(xué)生具有個性活潑,思維活躍,對各種事物充滿好奇,學(xué)習(xí)情緒易于調(diào)動,學(xué)習(xí)積極性高的特點(diǎn),但學(xué)生的抽象思維能力個體差異較大,并且班級中已出現(xiàn)分化現(xiàn)象。
2.學(xué)生的年齡特點(diǎn)和認(rèn)知特點(diǎn)
班級學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨(dú)立分析、解決問題的能力,表現(xiàn)欲望較為強(qiáng)烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的意識與經(jīng)驗(yàn),因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強(qiáng)學(xué)生在學(xué)習(xí)過程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過程中,更多地獲得成功的體驗(yàn),感受學(xué)習(xí)思考的樂趣。
教學(xué)過程:
一:復(fù)習(xí)鞏固,建立聯(lián)系。
【教師活動】
問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學(xué)生活動】
學(xué)生回憶,并舉手回答,對于填空題,讓更多的學(xué)生參與,說出更多的答案。
【教師活動】
評析學(xué)生的結(jié)果,給予表揚(yáng)。
總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二:動手操作,探索發(fā)現(xiàn)。
活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學(xué)生活動】
學(xué)生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問題:①什么是正方形?
觀察發(fā)現(xiàn),從活動中體會。
【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學(xué)生活動】認(rèn)真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。
設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學(xué)生活動】
小組討論,分組回答。
【教師活動】
總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。
設(shè)置問題③正方形有那些性質(zhì)?
【學(xué)生活動】
小組討論,舉手搶答。
【教師活動】
表揚(yáng)學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形每一條對角線平分一組對角
活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?
學(xué)生活動
折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。
教師活動
演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學(xué)生活動
小組充分交流,表達(dá)不同的意見。
教師活動
評析活動,總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;
有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;
有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學(xué)生交流,感受正方形
三,應(yīng)用體驗(yàn),推理證明。
出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對角線互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學(xué)生活動
獨(dú)立思考,寫出推理過程,再進(jìn)行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評析解題步驟,表揚(yáng)突出學(xué)生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學(xué)生活動
小組交流,分析題意,整理思路,指名口答。
教師活動
說明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識。
這一節(jié)課你有什么收獲?
學(xué)生舉手談?wù)撟约旱氖斋@。
請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。
發(fā)表評論
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗(yàn)探究成功的樂趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。
認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):等腰梯形性質(zhì)的探索;
難點(diǎn):梯形中輔助線的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:啟發(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過程:
。ㄒ唬⿲(dǎo)入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點(diǎn)討論)
等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等
(三)質(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
初中數(shù)學(xué)教案11
教學(xué)建議
知識結(jié)構(gòu)
重難點(diǎn)分析
本節(jié)的重點(diǎn)是的性質(zhì)和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。
本節(jié)的難點(diǎn)是性質(zhì)的靈活應(yīng)用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨(dú)特的性質(zhì)。如果得到一個平行四邊形是,就可以得到許多關(guān)于邊、角、對角線的條件,在實(shí)際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無措,教師在教學(xué)過程中應(yīng)給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點(diǎn)和與平行四邊形的關(guān)系,建議教師在教學(xué)過程中注意以下問題:
1.的知識,學(xué)生在小學(xué)時接觸過一些,可由小學(xué)學(xué)過的知識作為引入。
2.在現(xiàn)實(shí)中的實(shí)例較多,在講解的性質(zhì)和判定時,教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實(shí)例來進(jìn)行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識.
3.如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學(xué)過程中的道具,既增強(qiáng)了學(xué)生的動手能力和參與感,有在教學(xué)中有切實(shí)的體例,使學(xué)生對知識的掌握更輕松些.
4.在對性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個學(xué)生分別對事先準(zhǔn)備后的圖形進(jìn)行邊、角、對角線的測量,然后在組內(nèi)進(jìn)行整理、歸納.
5.由于和的性質(zhì)定理證明比較簡單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來進(jìn)行具體的證明.
6.在性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。
一、教學(xué)目標(biāo)
1.掌握概念,知道與平行四邊形的關(guān)系.
2.掌握的性質(zhì).
3.通過運(yùn)用知識解決具體問題,提高分析能力和觀察能力.
4.通過教具的`演示培養(yǎng)學(xué)生的學(xué)習(xí)興趣.
5.根據(jù)平行四邊形與矩形、的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.
6.通過性質(zhì)的學(xué)習(xí),體會的圖形美.
二、教法設(shè)計
觀察分析討論相結(jié)合的方法
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):的性質(zhì)定理.
2.教學(xué)難點(diǎn):把的性質(zhì)和直角三角形的知識綜合應(yīng)用.
3.疑點(diǎn):與矩形的性質(zhì)的區(qū)別.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
教具(做一個短邊可以運(yùn)動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設(shè)計
教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時點(diǎn)撥
七、教學(xué)步驟
【復(fù)習(xí)提問】
1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?
2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角.
3.矩形的一個角的平分線把較長的邊分成、,求矩形的周長.
【引入新課】
我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形——矩形,其實(shí)還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進(jìn)行演示,如圖,改變平行四邊形的邊,使之一組鄰進(jìn)相等,引出概念.
【講解新課】
1.定義:有一組鄰邊相等的平行四邊形叫做.
講解這個定義時,要抓住概念的本質(zhì),應(yīng)突出兩條:
(1)強(qiáng)調(diào)是平行四邊形.
。2)一組鄰邊相等.
2.的性質(zhì):
教師強(qiáng)調(diào),既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質(zhì),此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質(zhì).
下面研究的性質(zhì):
師:同學(xué)們根據(jù)的定義結(jié)合圖形猜一下有什么性質(zhì)(讓學(xué)生們討論,并引導(dǎo)學(xué)生分別從邊、角、對角線三個方面分析).
生:因?yàn)槭怯幸唤M鄰邊相等的平行四邊形,所以根據(jù)平行四邊形對邊相等的性質(zhì)可以得到.
性質(zhì)定理1:的四條邊都相等.
由的四條邊都相等,根據(jù)平行四邊形對角線互相平分,可以得到
性質(zhì)定理2:的對角線互相垂直并且每一條對角線平分一組對角.
引導(dǎo)學(xué)生完成定理的規(guī)范證明.
師:觀察右圖,被對角線分成的四個直角三角形有什么關(guān)系?
生:全等.
師:它們的底和高和兩條對角線有什么關(guān)系?
生:分別是兩條對角線的一半.
師:如果設(shè)的兩條對角線分別為、,則的面積是什么?
生:
教師指出當(dāng)不易求出對角線長時,就用平行四邊形面積的一般計算方法計算面積.
例2已知:如右圖,是△的角平分線,交于,交于.
求證:四邊形是.
。ㄒ龑(dǎo)學(xué)生用定義來判定.)
例3已知的邊長為,,對角線,相交于點(diǎn),如右圖,求這個的對角線長和面積.
。1)按教材的方法求面積.
(2)還可以引導(dǎo)學(xué)生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計算的面積.
【總結(jié)、擴(kuò)展】
1.小結(jié):(打出投影)(圖4)
。1)、平行四邊形、四邊形的從屬關(guān)系:
。2)性質(zhì):圖5
、倬哂衅叫兴倪呅蔚乃行再|(zhì).
②特有性質(zhì):四條邊相等;對角線互相垂直,且平分每一組對角.
八、布置作業(yè)
教材P158中6、7、8,P196中10
九、板書設(shè)計
標(biāo)題
定義……
性質(zhì)例2…… 小結(jié):
性質(zhì)定理1:……例3…… ……
性質(zhì)定理2:……
十、隨堂練習(xí)
教材P151中1、2、3
補(bǔ)充
1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.
2.周長為80,一對角線為20,則相鄰兩角的度數(shù)為___________、____________.
初中數(shù)學(xué)教案12
教學(xué)目標(biāo)
1.使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;
2.初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):列代數(shù)式.
難點(diǎn):弄清楚語句中各數(shù)量的意義及相互關(guān)系.
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
1庇么數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;(-7)
(4)乙數(shù)比x大16%((1+16%)x)
(應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)
2痹詿數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點(diǎn)同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴嬎汴P(guān)系式(即日常生活語言)列成代數(shù)式北窘誑撾頤薔屠匆黃鷓習(xí)這個問題
二、講授新課
例1用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5;(2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7;(4)乙數(shù)比甲數(shù)大16%
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x
(本題應(yīng)由學(xué)生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x
例2用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的與乙數(shù)的的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)
(本題應(yīng)由學(xué)生口答,教師板書完成)
此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因?yàn)榧臃ㄓ薪粨Q律鋇玜與b的差指的是(a-b),而b與a的'差指的是(b-a)繃秸咼饗圓煌,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運(yùn)算順序
例3用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)
分析本題時,可提出以下問題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n;(2)5m+2
(這個例子直接為以后讓學(xué)生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準(zhǔn)備)
例4設(shè)字母a表示一個數(shù),用代數(shù)式表示:
(1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的;
(3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的的和
分析:啟發(fā)學(xué)生,做分析練習(xí)比緄1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a
(通過本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力)
例5設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個;(2)(m)m個
三、課堂練習(xí)
1鄙杓資為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的的和;(2)甲數(shù)的與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商
2庇么數(shù)式表示:
(1)比a與b的和小3的數(shù);(2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù);(4)比a除b的商的3倍大8的數(shù)
3庇么數(shù)式表示:
(1)與a-1的和是25的數(shù);(2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù);(4)除以(y+3)的商是y的數(shù)
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄
四、師生共同小結(jié)
首先,請學(xué)生回答:
1痹躚列代數(shù)式?2繃寫數(shù)式的關(guān)鍵是什么?
其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);
(2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;
(3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備幣求學(xué)生一定要牢固掌握
五、作業(yè)
1庇么數(shù)式表示:
(1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?
2幣閻一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積.
學(xué)法探究
已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?
分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看有沒有規(guī)律.
當(dāng)圓環(huán)為三個的時候,如圖:
此時鏈長為,這個結(jié)論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:
解:=99a+b(cm)
今天的內(nèi)容就介紹到這里了。
初中數(shù)學(xué)教案13
學(xué)習(xí)目標(biāo):
1.理解平行線的意義兩條直線的兩種位置關(guān)系;
2.理解并掌握平行公理及其推論的內(nèi)容;
3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;
學(xué)習(xí)重點(diǎn):
探索和掌握平行公理及其推論.
學(xué)習(xí)難點(diǎn):
對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)
一、學(xué)習(xí)過程:預(yù)習(xí)提問
兩條直線相交有幾個交點(diǎn)?
平面內(nèi)兩條直線的位置關(guān)系除相交外,還有哪些呢?
。ㄒ唬┊嬈叫芯
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據(jù)此方法練習(xí)畫平行線:
已知:直線a,點(diǎn)B,點(diǎn)C.
(1)過點(diǎn)B畫直線a的平行線,能畫幾條?
(2)過點(diǎn)C畫直線a的平行線,它與過點(diǎn)B的平行線平行嗎?
(二)平行公理及推論
1、思考:上圖中,①過點(diǎn)B畫直線a的平行線,能畫 條;
、谶^點(diǎn)C畫直線a的平行線,能畫 條;
③你畫的直線有什么位置關(guān)系? 。
②探索:如圖,P是直線AB外一點(diǎn),CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
。ㄒ唬┻x擇題:
1、下列推理正確的是 ( )
A、因?yàn)閍//d, b//c,所以c//d B、因?yàn)閍//c, b//d,所以c//d
C、因?yàn)閍//b, a//c,所以b//c D、因?yàn)閍//b, d//c,所以a//c
2.在同一平面內(nèi)有三條直線,若其中有兩條且只有兩條直線平行,則它們交點(diǎn)的個數(shù)為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內(nèi),與已知直線L平行的`直線有 條,而經(jīng)過L外一點(diǎn),與已知直線L平行的直線有且只有 條。
2、在同一平面內(nèi),直線L1與L2滿足下列條件,寫出其對應(yīng)的位置關(guān)系:
。1)L1與L2 沒有公共點(diǎn),則 L1與L2 ;
。2)L1與L2有且只有一個公共點(diǎn),則L1與L2 ;
(3)L1與L2有兩個公共點(diǎn),則L1與L2 。
3、在同一平面內(nèi),一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關(guān)系是 。
4、平面內(nèi)有a 、b、c三條直線,則它們的交點(diǎn)個數(shù)可能是 個。
三、CD⊥AB于D,E是BC上一點(diǎn),EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初中數(shù)學(xué)教案14
一、主題分析與設(shè)計
本節(jié)課是蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書七年級數(shù)學(xué)(下冊)第七章第2節(jié)內(nèi)容——探索平行線的性質(zhì),它是直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎(chǔ),是"空間與圖形"的重要組成部分。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》強(qiáng)調(diào):數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、生生之間交往互動與共同發(fā)展的過程;動手實(shí)踐,自主探索,合作交流是孩子學(xué)習(xí)數(shù)學(xué)的重要方式;合作交流的學(xué)習(xí)形式是培養(yǎng)孩子積極參與、自主學(xué)習(xí)的有效途徑。本節(jié)課將以"生活·數(shù)學(xué)"、"活動·思考"、"表達(dá)·應(yīng)用"為主線開展課堂教學(xué),以學(xué)生看得到、感受得到的基本素材創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生活動,并在活動中激發(fā)學(xué)生認(rèn)真思考、積極探索,主動獲取數(shù)學(xué)知識,從而促進(jìn)學(xué)生研究性學(xué)習(xí)方式的形成,同時通過小組內(nèi)學(xué)生相互協(xié)作研究,培養(yǎng)學(xué)生合作性學(xué)習(xí)精神。
二、教學(xué)目標(biāo)
1、知識與技能:掌握平行線的性質(zhì),能應(yīng)用性質(zhì)解決相關(guān)問題。
2、數(shù)學(xué)思考:在平行線的性質(zhì)的探究過程中,讓學(xué)生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程。初中數(shù)學(xué)教育敘事
3、解決問題:通過探究平行線的性質(zhì),使學(xué)生形成數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神。
4、情感態(tài)度與價值觀:在探究活動中,讓學(xué)生獲得親自參與研究的情感體驗(yàn),從而增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和團(tuán)結(jié)合作、勇于探索、鍥而不舍的精神。
三、教學(xué)重、難點(diǎn)
1、重點(diǎn):對平行線性質(zhì)的掌握與應(yīng)用
2、難點(diǎn):對平行線性質(zhì)1的探究
四、教學(xué)用具
1、教具:多媒體平臺及多媒體課件
2、學(xué)具:三角尺、量角器、剪刀
五、教學(xué)過程
(一)創(chuàng)設(shè)情境,設(shè)疑激思
1、播放一組幻燈片。
內(nèi)容:
、俟┗疖囆旭偟蔫F軌上;
、谟斡境刂械挠镜栏魴;
、蹤M格紙中的線。
2、提問溫故:日常生活中我們經(jīng)常會遇到平行線,你能說出直線平行的條件嗎?
3、學(xué)生活動:針對問題,學(xué)生思考后回答——①同位角相等兩直線平行;②內(nèi)錯角相等兩直線平行;③同旁內(nèi)角互補(bǔ)兩直線平行;
4、教師肯定學(xué)生的回答并提出新問題:若兩直線平行,那么同位角、內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系呢?從而引出課題:7。2探索平行線的性質(zhì)(板書)
(二)數(shù)形結(jié)合,探究性質(zhì)
1、畫圖探究,歸納猜想
教師提要求,學(xué)生實(shí)踐操作:任意畫出兩條平行線(a ∥ b),畫一條截線c與這兩條平行線相交,標(biāo)出8個角。(統(tǒng)一采用阿拉伯?dāng)?shù)字標(biāo)角)
教師提出研究性問題一:
指出圖中的同位角,并度量這些角,把結(jié)果填入下表:
教師提出研究性問題二:
將畫出圖中的同位角任先一組剪下后疊合。
學(xué)生活動一:畫圖————度量————填表————猜想
學(xué)生活動二:畫圖————剪圖————疊合
讓學(xué)生根據(jù)活動得出的數(shù)據(jù)與操作得出的結(jié)果歸納猜想:兩直線平行,同位角相等。
教師提出研究性問題三:
再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?
學(xué)生活動:探究、按小組討論,最后得出結(jié)論:仍然成立。
2、教師用《幾何畫板》課件驗(yàn)證猜想,讓學(xué)生直觀感受猜想
3、教師展示平行線性質(zhì)1:兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
。ㄈ┮晁伎,培養(yǎng)創(chuàng)新
教師提出研究性問題四:
請判斷兩條平行線被第三條直線所截,內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系?
學(xué)生活動:獨(dú)立探究————小組討論————成果展示。
教師活動:評價學(xué)生的研究成果,并引導(dǎo)學(xué)生說理
因?yàn)閍 ∥ b(已知)
所以∠ 1= ∠ 2(兩直線平行,同位角相等)
又∠ 1= ∠ 3(對頂角相等)
∠ 1+ ∠ 4=180°(鄰補(bǔ)角的定義)
所以∠ 2= ∠ 3(等量代換)
∠ 2+ ∠ 4=180°(等量代換)
教師展示:
平行線性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等。(兩直線平行,內(nèi)錯角相等)
平行線性質(zhì)2:兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。(兩直線平行,同旁內(nèi)角互補(bǔ))
。ㄋ模⿲(shí)際應(yīng)用,優(yōu)勢互補(bǔ)
1、(搶答)課本P13練一練1、2及習(xí)題7。2 1、5
2、(討論解答)課本P13習(xí)題7。2 2、3、4
。ㄎ澹┱n堂總結(jié):這節(jié)課你有哪些收獲?
1、學(xué)生總結(jié):平行線的性質(zhì)1、2、3
2、教師補(bǔ)充總結(jié):
、庞"運(yùn)動"的觀點(diǎn)觀察數(shù)學(xué)問題;(如我們前面將同位角剪下疊合后分析問題)
、朴脭(shù)形結(jié)合的方法來解決問題;(如我們前面將同位角測量后分析問題)
、怯脺(zhǔn)確的語言來表達(dá)問題;(如平行線的性質(zhì)1、2、3的表述)
⑷用邏輯推理的形式來論證問題。(如我們前面對性質(zhì)2和3的說理過程)
(六)作業(yè)
學(xué)習(xí)與評價P5 1、2、3(填空);4、5、6(選擇);7、8(拓展與延伸)
六、教學(xué)反思:
數(shù)學(xué)課要注重引導(dǎo)學(xué)生探索與獲取知識的過程而不單注重學(xué)生對知識內(nèi)容的認(rèn)識,因?yàn)?過程"不僅能引導(dǎo)學(xué)生更好地理解知識,還能夠引導(dǎo)學(xué)生在活動中思考,更好地感受知識的價值,增強(qiáng)應(yīng)用數(shù)學(xué)知識解決問題的意識;感受生活與數(shù)學(xué)的聯(lián)系,獲得"情感、態(tài)度、價值觀"方面的體驗(yàn)。這節(jié)課的教學(xué)實(shí)現(xiàn)了三個方面的轉(zhuǎn)變:
、俳痰'轉(zhuǎn)變:本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者。教師成為了學(xué)生的導(dǎo)師、伙伴、甚至成為了學(xué)生的學(xué)生,在課堂上除了導(dǎo)引學(xué)生活動外,還要認(rèn)真聆聽學(xué)生"教"你他們活動的過程和通過活動所得的知識或方法。
、趯W(xué)的轉(zhuǎn)變:學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀䦟W(xué),跟老師學(xué)轉(zhuǎn)變?yōu)樽灾魅W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識的層面上,而是站在研究者的角度深入其境,不是簡單地"學(xué)"數(shù)學(xué),而是深入地"做"數(shù)學(xué)。
、壅n堂氛圍的轉(zhuǎn)變:整節(jié)課以"流暢、開放、合作、‘隱'導(dǎo)"為基本特征,教師對學(xué)生的思維活動減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學(xué)生與學(xué)生、學(xué)生與教師之間以"對話"、"討論"為出發(fā)點(diǎn),以互助、合作為手段,以解決問題為目的,讓學(xué)生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
總之,在數(shù)學(xué)教學(xué)的花園里,教師只要為學(xué)生布置好和諧的場景和明晰的路標(biāo),然后就讓他們自由地快活地去跳舞吧
初中數(shù)學(xué)教案15
教學(xué)目標(biāo):
1、 在現(xiàn)實(shí)情境中理解線段、射線、直線等簡單圖形(知識目標(biāo))
2、 會說出線段、射線、直線的特征;會用字母表示線段、射線、直線(能力目標(biāo))
3、 通過操作活動,了解兩點(diǎn)確定一條直線等事實(shí),積累操作活動的經(jīng)驗(yàn),培養(yǎng)學(xué)生的興趣、愛好,感受圖形世界的豐富多彩。(情感態(tài)度目標(biāo))
教學(xué)難點(diǎn):了解“兩點(diǎn)確定一條直線”等事實(shí),并應(yīng)用它解決一些實(shí)際問題
教 具: 多媒體、棉線、三角板
教學(xué)過程:
情景創(chuàng)設(shè):觀察電腦展示圖,使學(xué)生感受圖形世界的豐富多彩,激發(fā)學(xué)習(xí)興趣。
如何來描述我們所看到的現(xiàn)象?
教學(xué)過程:
1、 一段拉直的.棉線可近似地看作線段
師生畫線段
演示投影片1:①將線段向一個方向無限延長,就形成了______
學(xué)生畫射線
②將線段向兩個方向無限延長就形成了_______
學(xué)生畫直線
2、 討論小組交流:
、 生活中,還有哪些物體可以近似地看作線段、射線、直線?
。◤(qiáng)調(diào)近似兩個字,注意引導(dǎo)學(xué)生線段、射線、直線是從生活上抽象出來的)
、诰段、射線、直線,有哪些不同之處, 有哪些相同之處?
(鼓勵學(xué)生用自己的語言描述它們各自的特點(diǎn))
3、 問題1:圖中有幾條線段?哪幾條?
“要說清楚哪幾條,必須先給線段起名字!”從而引出線段的記法。
點(diǎn)的記法: 用一個大寫英文字母
線段的記法:①用兩個端點(diǎn)的字母來表示
、谟靡粋小寫英文字母表示
自己想辦法表示射線,讓學(xué)生充分討論,并比較如何表示合理
射線的記法:
用端點(diǎn)及射線上一點(diǎn)來表示,注意端點(diǎn)的字母寫在前面
直線的記法:
、 用直線上兩個點(diǎn)來表示
、 用一個小寫字母來表示
強(qiáng)調(diào)大寫字母與小寫字母來表示它們時的區(qū)別
。ㄎ覀冎浪麄兪菬o限延長的,我們?yōu)榱朔奖阊芯考s定成俗的用上面的方法來表示它們。)
練習(xí)1:讀句畫圖(如圖示)
。1) 連BC、AD
。2) 畫射線AD
(3) 畫直線AB、CD相交于E
。4) 延長線段BC,反向延長線段DA相交與F
。5) 連結(jié)AC、BD相交于O
練習(xí)2:右圖中,有哪幾條線段、射線、直線
4、 問題2 請過一點(diǎn)A畫直線,可以畫幾條?過兩點(diǎn)A、B呢?
學(xué)生通過畫圖,得出結(jié)論:過一點(diǎn)可以畫無數(shù)條直線
經(jīng)過兩點(diǎn)有且只有一條直線
問題3 如果你想將一硬紙條固定在硬紙板上,至少需要幾根圖釘?
為什么?(學(xué)生通過操作,回答)
小組討論交流:
你還能舉出一個能反映“經(jīng)過兩點(diǎn)有且只有一條直線”的實(shí)例嗎?
適當(dāng)引導(dǎo):栽樹時只要確定兩個樹坑的位置,就能確定同一行的樹坑所在的直線。建筑工人在砌墻時,經(jīng)常在兩個墻角分別立一根標(biāo)志桿,在兩根標(biāo)志桿之間拉一根繩,沿這根繩就可以砌出直的墻來。
5、 小結(jié):
① 學(xué)生回憶今天這節(jié)課學(xué)過的內(nèi)容
進(jìn)一步清晰線段、射線、直線的概念
、 強(qiáng)調(diào)線段、射線、直線表示方法的掌握
6、 作業(yè):①閱讀“讀一讀” P121
、诹(xí)題4的1、2、3。4作為思考題
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案08-12
角初中數(shù)學(xué)教案12-30
人教版初中數(shù)學(xué)教案07-17
初中數(shù)學(xué)教案模板11-02
【熱門】初中數(shù)學(xué)教案11-18
【精】初中數(shù)學(xué)教案11-21
初中數(shù)學(xué)教案【精】11-19
初中數(shù)學(xué)教案【推薦】11-22
初中數(shù)學(xué)教案【熱門】11-20
【薦】初中數(shù)學(xué)教案11-26