初中數(shù)學公開課教案
作為一名專為他人授業(yè)解惑的人民教師,就不得不需要編寫教案,借助教案可以提高教學質(zhì)量,收到預期的教學效果。那么優(yōu)秀的教案是什么樣的呢?下面是小編幫大家整理的初中數(shù)學公開課教案,歡迎閱讀與收藏。
初中數(shù)學公開課教案1
一、教材分析
A、教材的地位與作用:①本節(jié)教材是初三代數(shù)第十四章統(tǒng)計初步第二節(jié),它是上節(jié)平均數(shù)的延續(xù)。平均數(shù)、眾數(shù)及中位數(shù)都是描述一組數(shù)據(jù)的集中趨勢的特征數(shù),但描述的角度和適用范圍有所不同。本節(jié)教學使學生進一步體會用樣本估計總體的統(tǒng)計思想方法,形成運用數(shù)學知識解決簡單應用問題的能力。學好本節(jié)課,也將為本章后繼內(nèi)容的學習打下良好的基礎。②本節(jié)內(nèi)容在中考命題中也占有重要地位,如:20xx年河南中考選擇題16題.20xx年河南中考選擇題19題,1997年河南中考選擇題3題,1996年河南中考填空題9題!20xx一高英才杯” 選擇題3題。
B.教學目標
1、知識目標:
、偈箤W生理解眾數(shù)與中位數(shù)的意義。
、跁笠唤M數(shù)據(jù)的眾數(shù)和中位數(shù)。
2、能力目標:培養(yǎng)學生的觀察能力、計算能力。
3、德育目標:
、倥囵B(yǎng)學生認真、耐心、細致的學習態(tài)度和學習習慣。
、跐B透數(shù)學知識來源于生活,反過來又服務于生活的思想。
C、重點·難點·疑點
1.教學重點:定義的理解及求一組數(shù)據(jù)的眾數(shù)與中位數(shù)。
2.教學難點:
、倨骄鶖(shù)、眾數(shù)、中位數(shù)這三數(shù)之間的區(qū)別與聯(lián)系。
、谂紨(shù)個數(shù)據(jù)的中位數(shù)的求法。
3.教學疑點:學生容易把一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)的次數(shù)當做眾數(shù)。
二、教法設計
問題情景教學法
三、教學過程
【引導回顧 搭建橋梁】
、僭鯓忧笠唤M數(shù)據(jù)的平均數(shù)?
、谄骄鶖(shù)與一組數(shù)據(jù)中的每個數(shù)據(jù)均有關系嗎?
這節(jié)課,我們將進一步學習另兩個反映一組數(shù)據(jù)的集中趨勢的特征數(shù)——眾數(shù)和中位數(shù)。
14.2眾數(shù)與中位數(shù)(課件)
【創(chuàng)設情境 探究新知】
問題情景一:一家童鞋店在一段時間內(nèi)銷售了某種童鞋30雙,其中各種尺碼的鞋的銷售量如下表所示:
鞋的尺碼(單位:厘米)
18
19
20
21
21.5
22
22.5
銷售量(單位:雙)
1
2
5
11
7
3
1
在這個問題里,如果你是鞋店老板,你最關心的是什么?
問題情景二:某面包房,在一天內(nèi)銷售面包100個,各類面包銷售量如下表:
面包種類
奶油
巧克力
豆沙
香稻
三色
椰茸
銷售量(單位:個)
10
15
25
5
15
30
在這個問題中,如果你是店主,你最關心的是什么?
定義:在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
同時要強調(diào)眾數(shù)的功能,即“當一組數(shù)據(jù)中不少數(shù)據(jù)多次重復出現(xiàn)時,常用眾數(shù)來描述這組數(shù)據(jù)的集中趨勢”。
注意:①.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),是一組數(shù)據(jù)中的原數(shù)據(jù),而不是相應的次數(shù)。例如:問題一中眾數(shù)是(21厘米),不要把21厘米的鞋的銷售量11當作所求的眾數(shù)。
、谝唤M數(shù)據(jù)中的眾數(shù)有時不只一個,如數(shù)據(jù)2、3、-1、2、1、3中,2和3都出現(xiàn)了2次,它們都是這組數(shù)據(jù)的眾數(shù)。
例1、在一次英語口試中,20名學生的得分如下:
70 80 100 60 80 70 90 50 80 70
80 70 90 80 90 80 70 90 60 80
求這次英語口試中學生得分的眾數(shù).
請用觀察法找出這組數(shù)據(jù)中哪些數(shù)據(jù)出現(xiàn)的頻數(shù)較多,從而進一步找出它的眾數(shù);也可仿照問題一畫表格找出眾數(shù)。強調(diào)一下這個結(jié)論反映了得80分的學生最多。
問題情景三:在初三數(shù)學競賽中,我班其中5名學生的成績從低分到高分排列名次是: 55 57 61 62 98,其中哪一個數(shù)據(jù)能用來描述這組數(shù)據(jù)的集中趨勢?
觀察在這5個數(shù)據(jù)中,前4個數(shù)據(jù)的大小比較接近,最后1個數(shù)據(jù)與它們的差異較大。這時如果用其中最中間的數(shù)據(jù)61來描述這組數(shù)據(jù)的集中趨勢,可以不受個別數(shù)據(jù)較大變動的影響。
中位數(shù)定義:將一組數(shù)據(jù)按大小依次排列,把處在最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
注意:1.求中位數(shù)要將一組數(shù)據(jù)按大小順序,而不必計算,顧名思義,中位數(shù)就是位置處于最中間的一個數(shù)(或最中間的兩個數(shù)的平均數(shù)),排序時,從小到大或從大到小都可以。
2.在數(shù)據(jù)個數(shù)為奇數(shù)的情況下,中位數(shù)是這組數(shù)據(jù)中的一個數(shù)據(jù);如情景三的中位數(shù)是61。但在數(shù)據(jù)個數(shù)為偶數(shù)的情況下,其中位數(shù)是最中間兩個數(shù)據(jù)的平均數(shù),它不一定與這組數(shù)據(jù)中的某個數(shù)據(jù)相等。
例2 10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是:
15 17 14 10 15 19 17 16 14 12
求這一一天10名工人生產(chǎn)的零件的中位數(shù).
請觀察分析后,自解.
【誘向深入 拓展思維】
例3在一次中學生田徑運動會上,參加男子跳高的17名運動員的成績?nèi)缦卤硭荆?/p>
成績(單位:米)
1.50
1.60
1.65
1.70
1.75
1.80
1.85
1.90
人數(shù)
2
3
2
3
4
1
1
1
分別求這些運動員成績的眾數(shù),中位數(shù)與平均數(shù)(平均數(shù)的計算結(jié)果保留到小數(shù)點后第2位)。
觀察表格,分析回答下列問題:①表中國共產(chǎn)黨有多少個數(shù)據(jù)?其中哪個數(shù)據(jù)出現(xiàn)的次數(shù)最多?這組數(shù)據(jù)的眾數(shù)是什么?說明什么?
、诒砝锏17個數(shù)據(jù)可看成是按什么順序排列的?其中第幾個數(shù)是最中間的數(shù)據(jù)?這組數(shù)據(jù)的中位數(shù)是多少?說明什么?
③可選用哪個公式求這組數(shù)據(jù)的平均數(shù)?所求得的平均數(shù)能說明什么?這樣分析例題,可使學生加深理解平均數(shù)、眾數(shù)、中位數(shù)的概念之間的聯(lián)系與區(qū)別,體會到這三個數(shù)在描述一組數(shù)據(jù)集中趨勢時的不同角度。
【展示應用 評價自我】
補充練習1、已知一組數(shù)據(jù)10,10,x,8(由大到小排列)的中位數(shù)與平均數(shù)相等,求x值及這組數(shù)據(jù)的中位數(shù)。
解:∵10,10,x,8的中位數(shù)與平均數(shù)相等
∴ (10+x)= (10+10+x+8)
∴x=8, (10+x)=9
∴這組數(shù)據(jù)中的中位數(shù)是9。
補充練習2、當5個整數(shù)從小到大排列,其中位數(shù)是4,如果這個數(shù)集的唯一眾數(shù)是6,則這5個整數(shù)可能的最大的和是( )
A.21 B.22 C.23 D.24
分析:設這5個整數(shù)按從小到大排列為a1,a2,a3,a4,a5,由于中位數(shù)是4,所以a3=4,又6是唯一眾數(shù),所以a4=a5=6,此時,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21
解:選(A)
3、教材P159中1、2、3
【鏈接知識 歸納小結(jié)】
1.知識小結(jié):這節(jié)課我們學習了眾數(shù)、中位數(shù)的概念,了解了它們在描述一組數(shù)據(jù)集中趨勢時的不同角度和適用范圍。
2.方法小結(jié):①眾數(shù)由所給數(shù)據(jù)可直接求出,(一組數(shù)據(jù)中的眾數(shù)可能不止一個,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)的次數(shù)最多的數(shù)據(jù),而不是該數(shù)據(jù)出現(xiàn)的次數(shù).如果有兩個數(shù)據(jù)出現(xiàn)的次數(shù)相同,并且比其他數(shù)據(jù)出現(xiàn)次數(shù)都多,那么這兩個數(shù)據(jù)都是這組數(shù)據(jù)的眾數(shù))。②求中位數(shù)時,首先要先排序(從小到大或從大到。,然后計算中位數(shù)的序號,分數(shù)據(jù)為奇數(shù)個與偶數(shù)個兩種來求.(既找出最中間的一個數(shù)據(jù)或最中間兩個數(shù)并算出它們的平均數(shù))。
3.知識網(wǎng)絡:平均數(shù)、眾數(shù)及中位數(shù)都是描述一組數(shù)據(jù)的集中趨勢的特征數(shù),但描述的角度和適用范圍有所不同。平均數(shù)的大小與一組數(shù)據(jù)里的每個數(shù)據(jù)均有關系,其中任何數(shù)據(jù)的變動都會相應引起平均數(shù)的變動;眾數(shù)著眼于對各數(shù)據(jù)出現(xiàn)的頻數(shù)的考察,其大小只與這組數(shù)據(jù)中的部分數(shù)據(jù)有關。當一組數(shù)據(jù)中有不少數(shù)據(jù)多次重復出現(xiàn)時,其眾數(shù)往往是我們關心的一種統(tǒng)計量;中位數(shù)則僅與數(shù)據(jù)的排列位置有關,某些數(shù)據(jù)的變動對它的中位數(shù)沒有影響。當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用它來描述其集中趨勢。
【布置作業(yè)】教材P163A組1、2、3,B組。
【板書設計】
14.2 眾數(shù)與中位數(shù)
1.定義 例1 例2 例3
眾數(shù): 練習1 練習2
中位數(shù)
一、教材分析
A、教材的地位與作用:①本節(jié)教材是初三代數(shù)第十四章統(tǒng)計初步第二節(jié),它是上節(jié)平均數(shù)的延續(xù)。平均數(shù)、眾數(shù)及中位數(shù)都是描述一組數(shù)據(jù)的集中趨勢的特征數(shù),但描述的角度和適用范圍有所不同。本節(jié)教學使學生進一步體會用樣本估計總體的統(tǒng)計思想方法,形成運用數(shù)學知識解決簡單應用問題的能力。學好本節(jié)課,也將為本章后繼內(nèi)容的學習打下良好的基礎。②本節(jié)內(nèi)容在中考命題中也占有重要地位,如:20xx年河南中考選擇題16題.20xx年河南中考選擇題19題,1997年河南中考選擇題3題,1996年河南中考填空題9題!20xx一高英才杯” 選擇題3題。
B.教學目標
1、知識目標:
、偈箤W生理解眾數(shù)與中位數(shù)的意義。
、跁笠唤M數(shù)據(jù)的眾數(shù)和中位數(shù)。
2、能力目標:培養(yǎng)學生的觀察能力、計算能力。
3、德育目標:
①培養(yǎng)學生認真、耐心、細致的學習態(tài)度和學習習慣。
、跐B透數(shù)學知識來源于生活,反過來又服務于生活的思想。
C、重點·難點·疑點
1.教學重點:定義的理解及求一組數(shù)據(jù)的眾數(shù)與中位數(shù)。
2.教學難點:
①平均數(shù)、眾數(shù)、中位數(shù)這三數(shù)之間的區(qū)別與聯(lián)系。
、谂紨(shù)個數(shù)據(jù)的中位數(shù)的求法。
3.教學疑點:學生容易把一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)的次數(shù)當做眾數(shù)。
二、教法設計
問題情景教學法
三、教學過程
【引導回顧 搭建橋梁】
①怎樣求一組數(shù)據(jù)的平均數(shù)?
、谄骄鶖(shù)與一組數(shù)據(jù)中的每個數(shù)據(jù)均有關系嗎?
這節(jié)課,我們將進一步學習另兩個反映一組數(shù)據(jù)的集中趨勢的特征數(shù)——眾數(shù)和中位數(shù)。
14.2眾數(shù)與中位數(shù)(課件)
【創(chuàng)設情境 探究新知】
問題情景一:一家童鞋店在一段時間內(nèi)銷售了某種童鞋30雙,其中各種尺碼的鞋的銷售量如下表所示:
鞋的尺碼(單位:厘米)
18
19
20
21
21.5
22
22.5
銷售量(單位:雙)
1
2
5
11
7
3
1
在這個問題里,如果你是鞋店老板,你最關心的是什么?
問題情景二:某面包房,在一天內(nèi)銷售面包100個,各類面包銷售量如下表:
面包種類
奶油
巧克力
豆沙
香稻
三色
椰茸
銷售量(單位:個)
10
15
25
5
15
30
在這個問題中,如果你是店主,你最關心的是什么?
定義:在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
同時要強調(diào)眾數(shù)的功能,即“當一組數(shù)據(jù)中不少數(shù)據(jù)多次重復出現(xiàn)時,常用眾數(shù)來描述這組數(shù)據(jù)的集中趨勢”。
注意:①.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),是一組數(shù)據(jù)中的原數(shù)據(jù),而不是相應的次數(shù)。例如:問題一中眾數(shù)是(21厘米),不要把21厘米的鞋的銷售量11當作所求的眾數(shù)。
、谝唤M數(shù)據(jù)中的眾數(shù)有時不只一個,如數(shù)據(jù)2、3、-1、2、1、3中,2和3都出現(xiàn)了2次,它們都是這組數(shù)據(jù)的眾數(shù)。
例1、在一次英語口試中,20名學生的得分如下:
70 80 100 60 80 70 90 50 80 70
80 70 90 80 90 80 70 90 60 80
求這次英語口試中學生得分的眾數(shù).
請用觀察法找出這組數(shù)據(jù)中哪些數(shù)據(jù)出現(xiàn)的頻數(shù)較多,從而進一步找出它的眾數(shù);也可仿照問題一畫表格找出眾數(shù)。強調(diào)一下這個結(jié)論反映了得80分的學生最多。
問題情景三:在初三數(shù)學競賽中,我班其中5名學生的成績從低分到高分排列名次是: 55 57 61 62 98,其中哪一個數(shù)據(jù)能用來描述這組數(shù)據(jù)的集中趨勢?
觀察在這5個數(shù)據(jù)中,前4個數(shù)據(jù)的大小比較接近,最后1個數(shù)據(jù)與它們的差異較大。這時如果用其中最中間的數(shù)據(jù)61來描述這組數(shù)據(jù)的集中趨勢,可以不受個別數(shù)據(jù)較大變動的影響。
中位數(shù)定義:將一組數(shù)據(jù)按大小依次排列,把處在最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的`中位數(shù)。
注意:1.求中位數(shù)要將一組數(shù)據(jù)按大小順序,而不必計算,顧名思義,中位數(shù)就是位置處于最中間的一個數(shù)(或最中間的兩個數(shù)的平均數(shù)),排序時,從小到大或從大到小都可以。
2.在數(shù)據(jù)個數(shù)為奇數(shù)的情況下,中位數(shù)是這組數(shù)據(jù)中的一個數(shù)據(jù);如情景三的中位數(shù)是61。但在數(shù)據(jù)個數(shù)為偶數(shù)的情況下,其中位數(shù)是最中間兩個數(shù)據(jù)的平均數(shù),它不一定與這組數(shù)據(jù)中的某個數(shù)據(jù)相等。
例2 10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是:
15 17 14 10 15 19 17 16 14 12
求這一天10名工人生產(chǎn)的零件的中位數(shù).
請觀察分析后,自解.
【誘向深入 拓展思維】
例3在一次中學生田徑運動會上,參加男子跳高的17名運動員的成績?nèi)缦卤硭荆?/p>
成績(單位:米)
1.50
1.60
1.65
1.70
1.75
1.80
1.85
1.90
人數(shù)
2
3
2
3
4
1
1
1
分別求這些運動員成績的眾數(shù),中位數(shù)與平均數(shù)(平均數(shù)的計算結(jié)果保留到小數(shù)點后第2位)。
觀察表格,分析回答下列問題:①表中國共產(chǎn)黨有多少個數(shù)據(jù)?其中哪個數(shù)據(jù)出現(xiàn)的次數(shù)最多?這組數(shù)據(jù)的眾數(shù)是什么?說明什么?
、诒砝锏17個數(shù)據(jù)可看成是按什么順序排列的?其中第幾個數(shù)是最中間的數(shù)據(jù)?這組數(shù)據(jù)的中位數(shù)是多少?說明什么?
③可選用哪個公式求這組數(shù)據(jù)的平均數(shù)?所求得的平均數(shù)能說明什么?這樣分析例題,可使學生加深理解平均數(shù)、眾數(shù)、中位數(shù)的概念之間的聯(lián)系與區(qū)別,體會到這三個數(shù)在描述一組數(shù)據(jù)集中趨勢時的不同角度。
【展示應用 評價自我】
補充練習1、已知一組數(shù)據(jù)10,10,x,8(由大到小排列)的中位數(shù)與平均數(shù)相等,求x值及這組數(shù)據(jù)的中位數(shù)。
解:∵10,10,x,8的中位數(shù)與平均數(shù)相等
∴ (10+x)= (10+10+x+8)
∴x=8, (10+x)=9
∴這組數(shù)據(jù)中的中位數(shù)是9。
補充練習2、當5個整數(shù)從小到大排列,其中位數(shù)是4,如果這個數(shù)集的唯一眾數(shù)是6,則這5個整數(shù)可能的最大的和是( )
A.21 B.22 C.23 D.24
分析:設這5個整數(shù)按從小到大排列為a1,a2,a3,a4,a5,由于中位數(shù)是4,所以a3=4,又6是唯一眾數(shù),所以a4=a5=6,此時,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21
解:選(A)
3、教材P159中1、2、3
【鏈接知識 歸納小結(jié)】
1.知識小結(jié):這節(jié)課我們學習了眾數(shù)、中位數(shù)的概念,了解了它們在描述一組數(shù)據(jù)集中趨勢時的不同角度和適用范圍。
2.方法小結(jié):①眾數(shù)由所給數(shù)據(jù)可直接求出,(一組數(shù)據(jù)中的眾數(shù)可能不止一個,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)的次數(shù)最多的數(shù)據(jù),而不是該數(shù)據(jù)出現(xiàn)的次數(shù).如果有兩個數(shù)據(jù)出現(xiàn)的次數(shù)相同,并且比其他數(shù)據(jù)出現(xiàn)次數(shù)都多,那么這兩個數(shù)據(jù)都是這組數(shù)據(jù)的眾數(shù))。②求中位數(shù)時,首先要先排序(從小到大或從大到。,然后計算中位數(shù)的序號,分數(shù)據(jù)為奇數(shù)個與偶數(shù)個兩種來求.(既找出最中間的一個數(shù)據(jù)或最中間兩個數(shù)并算出它們的平均數(shù))。
3.知識網(wǎng)絡:平均數(shù)、眾數(shù)及中位數(shù)都是描述一組數(shù)據(jù)的集中趨勢的特征數(shù),但描述的角度和適用范圍有所不同。平均數(shù)的大小與一組數(shù)據(jù)里的每個數(shù)據(jù)均有關系,其中任何數(shù)據(jù)的變動都會相應引起平均數(shù)的變動;眾數(shù)著眼于對各數(shù)據(jù)出現(xiàn)的頻數(shù)的考察,其大小只與這組數(shù)據(jù)中的部分數(shù)據(jù)有關。當一組數(shù)據(jù)中有不少數(shù)據(jù)多次重復出現(xiàn)時,其眾數(shù)往往是我們關心的一種統(tǒng)計量;中位數(shù)則僅與數(shù)據(jù)的排列位置有關,某些數(shù)據(jù)的變動對它的中位數(shù)沒有影響。當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用它來描述其集中趨勢。
【布置作業(yè)】教材P163A組1、2、3,B組。
【板書設計】
14.2 眾數(shù)與中位數(shù)
1.定義 例1 例2 例3
眾數(shù): 練習1 練習2
中位數(shù)
初中數(shù)學公開課教案2
公開課教案
授課時間: 20xx.11.17早上第二節(jié) 授課班級:初三、1班 授課教師:
教學內(nèi)容: 7.7 直線和圓的位置關系
教學目標:
知識與技能目標:1、理解直線和圓相交、相切、相離的概念。
2. 初步掌握直線和圓的位置關系的性質(zhì)和判定及其靈活的應用。
過程與方法目標:1.通過直線和圓的位置關系的探究,向?qū)W生滲透分類、數(shù)形結(jié)合的思
想,培養(yǎng)學生觀察、分析、概括、知識遷移的能力;
2. 通過例題教學,培養(yǎng)學生靈活運用知識的解決能力。
情感與態(tài)度目標:讓學生從運動的觀點來觀察直線和圓相交、相切、相離的'關系、關注知識的生成,發(fā)展與變化的過程,主動探索,勇于發(fā)現(xiàn)。從而領悟世界上的一切物體都是運動變化著的,并且在一定的條件下可以轉(zhuǎn)化的辯證唯物主義觀點。
[1][2][3][4][5][6][7][8][9][10] ... 下一頁 >>
初中數(shù)學公開課教案3
問題描述:
初中數(shù)學教學案例
初中的,隨便那個年級。20xx字。案例和反思
1個回答 分類:數(shù)學 20xx-11-30
問題解答:
我來補答
2.3 平行線的性質(zhì)
一、教材分析:
本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章 第3節(jié) 平行線的性質(zhì),它是平行線及直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎,是“空間與圖形”的重要組成部分。
二、教學目標:
知識與技能:掌握平行線的性質(zhì),能應用性質(zhì)解決相關問題。
數(shù)學思考:在平行線的性質(zhì)的探究過程中,讓學生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程。
解決問題:通過探究平行線的性質(zhì),使學生形成數(shù)形結(jié)合的數(shù)學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神。
情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數(shù)學的熱情和勇于探索、鍥而不舍的`精神。
三、教學重、難點:
重點:平行線的性質(zhì)
難點:“性質(zhì)1”的探究過程
四、教學方法:
“引導發(fā)現(xiàn)法”與“動像探索法”
五、教具、學具:
教具:多媒體課件
學具:三角板、量角器。
六、教學媒體:
大屏幕、實物投影
七、教學過程:
。ㄒ唬﹦(chuàng)設情境,設疑激思:
1.播放一組幻燈片。內(nèi)容:①火車行駛在鐵軌上;②游泳池;③橫格紙。
2.聲音:日常生活中我們經(jīng)常會遇到平行線,你能說出直線平行的條件嗎?
學生活動:
思考回答。①同位角相等兩直線平行;②內(nèi)錯角相等兩直線平行;③同旁內(nèi)角互補兩直線平行;
教師:首先肯定學生的回答,然后提出問題。
問題:若兩直線平行,那么同位角、內(nèi)錯角、同旁內(nèi)角各有什么關系呢?
引出課題——平行線的性質(zhì)。
。ǘ⿺(shù)形結(jié)合,探究性質(zhì)
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖)。
問題一:指出圖中的同位角,并度量這些角,把結(jié)果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數(shù)
數(shù)量關系
學生活動:畫圖——度量——填表——猜想
結(jié)論:兩直線平行,同位角相等。
問題二:再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?
學生:探究、討論,最后得出結(jié)論:仍然成立。
2.教師用《幾何畫板》課件驗證猜想
3.性質(zhì)1.兩條直線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
。ㄈ┮晁伎,培養(yǎng)創(chuàng)新
問題三:請判斷內(nèi)錯角、同旁內(nèi)角各有什么關系?
學生活動:獨立探究——小組討論——成果展示。
教師活動:引導學生說理。
因為a‖b 因為a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
語言敘述:
性質(zhì)2 兩條直線被第三條直線所截,內(nèi)錯角相等。
。▋芍本平行,內(nèi)錯角相等)
性質(zhì)3 兩條直線被第三條直線所截,同旁內(nèi)角互補。
。▋芍本平行,同旁內(nèi)角互補)
。ㄋ模⿲嶋H應用,優(yōu)勢互補
1、(搶答)
。1)如圖,平行線AB、CD被直線AE所截
、偃簟1 = 110°,則∠2 = °。理由:。
、谌簟1 = 110°,則∠3 = °。理由:。
、廴簟1 = 110°,則∠4 = °。理由:。
(2)如圖,由AB‖CD,可得( )
。ˋ)∠1=∠2 (B)∠2=∠3
(C)∠1=∠4 (D)∠3=∠4
。3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
(A) 180°(B)270° (C)360° (D)540°
。4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時,∠2= 。
學生提問,并找出回答問題的同學。
2、(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
(五)概括存儲(小結(jié))
1.平行線的性質(zhì)1、2、3;
2.用“運動”的觀點觀察數(shù)學問題;
3.用數(shù)形結(jié)合的方法來解決問題。
。┳鳂I(yè) 第69頁 2、4、7.
八、教學反思:
、俳痰霓D(zhuǎn)變:本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者。在引導學生畫圖、測量、發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地、動態(tài)地展示同位角的關系,激發(fā)學生自覺地探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
、趯W的轉(zhuǎn)變:學生的角色從學會轉(zhuǎn)變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境。
、壅n堂氛圍的轉(zhuǎn)變:整節(jié)課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
初中數(shù)學公開課教案4
一、教材分析
本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。
二、教學目標
1、知識目標:了解多邊形內(nèi)角和公式。
2、數(shù)學思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結(jié)論的確定性,提高學生學習熱情。
三、教學重、難點
重點:探索多邊形內(nèi)角和。
難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
四、教學方法:引導發(fā)現(xiàn)法、討論法
五、教具、學具
教具:多媒體課件
學具:三角板、量角器
六、教學媒體:大屏幕、實物投影
七、教學過程:
。ㄒ唬﹦(chuàng)設情境,設疑激思
師:大家都知道三角形的內(nèi)角和是180,那么四邊形的內(nèi)角和,你知道嗎?
活動一:探究四邊形內(nèi)角和。
在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360。
方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360。
接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。
學生先獨立思考每個問題再分組討論。
關注:
。1)學生能否類比四邊形的方式解決問題得出正確的結(jié)論。
。2)學生能否采用不同的方法。
學生分組討論后進行交流(五邊形的內(nèi)角和)
方法1:把五邊形分成三個三角形,3個180的和是540。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結(jié)果得540。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結(jié)果得540。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結(jié)果得540。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720,十邊形內(nèi)角和是1440。
。ǘ┮晁伎迹囵B(yǎng)創(chuàng)新
師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
活動三:探究任意多邊形的內(nèi)角和公式。
思考:
。1)多邊形內(nèi)角和與三角形內(nèi)角和的關系?
。2)多邊形的邊數(shù)與內(nèi)角和的關系?
。3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系?
學生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180的和,五邊形內(nèi)角和是3個180的和,六邊形內(nèi)角和是4個180的和,十邊形內(nèi)角和是8個180的和。發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的'關系。
得出結(jié)論:多邊形內(nèi)角和公式:(n-2)·180。
。ㄈ⿲嶋H應用,優(yōu)勢互補
1、口答:(1)七邊形內(nèi)角和()
。2)九邊形內(nèi)角和()
(3)十邊形內(nèi)角和()
2、搶答:(1)一個多邊形的內(nèi)角和等于1260,它是幾邊形?
(2)一個多邊形的內(nèi)角和是1440,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
3、討論回答:一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多540,并且這個多邊形的各個內(nèi)角都相等,這個多邊形每個內(nèi)角等于多少度?
。ㄋ模└爬ù鎯
學生自己歸納總結(jié):
1、多邊形內(nèi)角和公式
2、運用轉(zhuǎn)化思想解決數(shù)學問題
3、用數(shù)形結(jié)合的思想解決問題
。ㄎ澹┳鳂I(yè):練習冊第93頁1、2、3
八、教學反思:
1、教的轉(zhuǎn)變
本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
2、學的轉(zhuǎn)變
學生的角色從學會轉(zhuǎn)變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變
整節(jié)課以“流暢、開放、合作、隱導”為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
初中數(shù)學公開課教案5
教學目的
1、通過對多個實際問題的分析,使學生體會到一元一次方程作為實際問題的數(shù)學模型的作用。
2、使學生會列一元一次方程解決一些簡單的應用題。
3、會判斷一個數(shù)是不是某個方程的解。
重點、難點
1、重點:會列一元一次方程解決一些簡單的'應用題。
2、難點:弄清題意,找出“相等關系”。
教學過程
一、復習提問
一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設小紅能買到工本筆記本,那么根據(jù)題意,得1.2x=6
因為1.2×5=6,所以小紅能買到5本筆記本。
二、新授
問題1:某校初中一年級328名 師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?(讓學生思考后,回答,教師再作講評)
算術(shù)法:(328-64)÷44=264÷44=6(輛)
列方程:設需要租用x輛客車,可得44x+64=328
解這個方程,就能得到所求的結(jié)果。
問:你會解這個方程嗎?試試看?
問題2:在課外活動中,張老師發(fā)現(xiàn)同學們的年齡大多是13歲,就問同學:“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”
通過分析,列出方程:13+x=(45+x)
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
三、鞏固練習
教科書第3頁練習1、2。
四、小結(jié)
本節(jié)課我們主要學習了怎樣列方程解應用題的方法,解決一些實際問題。談談你的學習體會。
五、作業(yè)
教科書第3頁,習題6.1第1、3題。
初中數(shù)學公開課教案6
教學目標:
會用待定系數(shù)法求二次函數(shù)的解析式,能結(jié)合二次函數(shù)的圖象掌握二次函數(shù)的性質(zhì),能較熟練地利用函數(shù)的性質(zhì)解決函數(shù)與圓、三角形、四邊形以及方程等知識相結(jié)合的綜合題。
重點難點:
重點;用待定系數(shù)法求函數(shù)的`解析式、運用配方法確定二次函數(shù)的特征。
難點:會運用二次函數(shù)知識解決有關綜合問題。
教學過程:
一、例題精析,強化練習,剖析知識點
用待定系數(shù)法確定二次函數(shù)解析式.
例:根據(jù)下列條件,求出二次函數(shù)的解析式。
。1)拋物線y=ax2+bx+c經(jīng)過點(0,1),(1,3),(-1,1)三點。
。2)拋物線頂點P(-1,-8),且過點A(0,-6)。
。3)已知二次函數(shù)y=ax2+bx+c的圖象過(3,0),(2,-3)兩點,并且以x=1為對稱軸。
。4)已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過一次函數(shù)y=-3/2x+3的圖象與x軸、y軸的交點;且過(1,1),求這個二次函數(shù)解析式,并把它化為y=a(x-h(huán))2+k的形式。
學生活動:學生小組討論,題目中的四個小題應選擇什么樣的函數(shù)解析式?并讓學生闡述解題方法。
教師歸納:二次函數(shù)解析式常用的有三種形式:(1)一般式:y=ax2+bx+c(a≠0)
(2)頂點式:y=a(x-h(huán))2+k(a≠0)(3)兩根式:y=a(x-x1)(x-x2)(a≠0)
當已知拋物線上任意三點時,通常設為一般式y(tǒng)=ax2+bx+c形式。
當已知拋物線的頂點與拋物線上另一點時,通常設為頂點式y(tǒng)=a(x-h(huán))2+k形式。
當已知拋物線與x軸的交點或交點橫坐標時,通常設為兩根式y(tǒng)=a(x-x1)(x-x2)
強化練習:已知二次函數(shù)的圖象過點A(1,0)和B(2,1),且與y軸交點縱坐標為m。
(1)若m為定值,求此二次函數(shù)的解析式;
。2)若二次函數(shù)的圖象與x軸還有異于點A的另一個交點,求m的取值范圍。
二、知識點串聯(lián),綜合應用
例:如圖,拋物線y=ax2+bx+c過點A(-1,0),且經(jīng)過直線y=x-3與坐標軸的兩個交
初中數(shù)學公開課教案7
教學目標:
1、會用待定系數(shù)法求反比例函數(shù)的解析式。
2、通過實例進一步加深對反比例函數(shù)的認識,能結(jié)合具體情境,體會反比例函數(shù)的意義,理解比例系數(shù)的具體的意義。
3、會通過已知自變量的值求相應的反比例函數(shù)的值。運用已知反比例函數(shù)的值求相應自變量的值解決一些簡單的問題。
重點:用待定系數(shù)法求反比例函數(shù)的解析式。
難點:例3要用科學知識,又要用不等式的知識,學生不易理解。
教學過程:
一。復習
1、反比例函數(shù)的定義:
判斷下列說法是否正確(對‖√‖,錯‖3‖)
。1)一矩形的面積為20cm2,相鄰的兩條邊長分別為x(cm)和y(cm),變量y是變量x的反比例函數(shù)。(2)圓的面積公式s??r2中,s與r成正比例。(3)矩形的'長為a,寬為b,周長為C,當C為常量時,a是b的反比例函數(shù)。方形的邊長為x,高為y,當其體積V為常量時,y是x的反比例函數(shù)。(4)一個正四棱柱的底面正
定時,商和除數(shù)成反比例。(5)當被除數(shù)(不為零)一
(6)計劃修建鐵路1200km,則鋪軌天數(shù)y(d)是每日鋪軌量x(km/d)的反比例函數(shù)。
2、思考:如何確定反比例函數(shù)的解析式?
。1)已知y是x的反比例函數(shù),比例系數(shù)是3,則函數(shù)解析式是_______
。2)當m為何值時,函數(shù)4是反比例函數(shù),并求出其函數(shù)解析式.y?2m?2關鍵是確定比例系數(shù)!x
二。新課
1、例2:已知變量y與x成反比例,且當x=2時y=9,寫出y與x之間的函數(shù)解析式和自變量的取值范圍。小結(jié):要確定一個反比例函數(shù)y?k的解析式,只需求出比例系數(shù)k。如果已知一對自變量與函數(shù)的對應值,x
3時,y=2,求這個函數(shù)的解析式和自變量的取值范圍。4就可以先求出比例系數(shù),然后寫出所要求的反比例函數(shù)。2.練習:已知y是關于x的反比例函數(shù),當x=?
3、說一說它們的求法:
(1)已知變量y與x-5成反比例,且當x=2時y=9,寫出y與x之間的函數(shù)解析式。
。2)已知變量y-1與x成反比例,且當x=2時y=9,寫出y與x之間的函數(shù)解析式。
4、例3、設汽車前燈電路上的電壓保持不變,選用燈泡的電阻為R(Ω),通過電流的強度為I(A)。
。1)已知一個汽車前燈的電阻為30Ω,通過的電流為0.40A,求I關于R的函數(shù)解析式,并說明比例系數(shù)的實際意義。
。2)如果接上新燈泡的電阻大于30Ω,那么與原來的相比,汽車前燈的亮度將發(fā)生什么變化?
在例3的教學中可作如下啟發(fā):
。1)電流、電阻、電壓之間有何關系?
。2)在電壓U保持不變的前提下,電流強度I與電阻R成哪種函數(shù)關系?
。3)前燈的亮度取決于哪個變量的大。咳绾螞Q定?
先讓學生嘗試練習,后師生一起點評。
三。鞏固練習:
1、當質(zhì)量一定時,二氧化碳的體積V與密度p成反比例。且V=5m3時,p=1.98kg/m3
。1)求p與V的函數(shù)關系式,并指出自變量的取值范圍。
。2)求V=9m3時,二氧化碳的密度。
四。拓展:
1、已知y與z成正比例,z與x成反比例,當x=-4時,z=3,y=-4.求:
(1)Y關于x的函數(shù)解析式;
。2)當z=-1時,x,y的值。
2、已知y?y1?y2,y1與x成正例,y2與x成反比例,并且x?2與x?3時,y的
值都等于10,求y與x之間的函數(shù)關系。
五。交流反思
求反比例函數(shù)的解析式一般有兩種情形:一種是在已知條件中明確告知變量之間成反比例函數(shù)關系,如例2;另一種是變量之間的關系由已學的數(shù)量關系直接給出,如例3中的I?
六。布置作業(yè):P4B組
【初中數(shù)學公開課教案】相關文章:
初中數(shù)學公開課教案(7篇)02-19
初中數(shù)學公開課教案7篇02-18
初中數(shù)學公開課教案(集合7篇)02-20
數(shù)學公開課教案01-09
公開課數(shù)學教案02-01
數(shù)學公開課大班教案11-01
小學數(shù)學公開課教案01-11
初中地理公開課教案02-24