- 初中數(shù)學教案 推薦度:
- 初中數(shù)學教案 推薦度:
- 初中數(shù)學教案 推薦度:
- 相關(guān)推薦
初中數(shù)學教案合集(15篇)
作為一位兢兢業(yè)業(yè)的人民教師,就難以避免地要準備教案,借助教案可以提高教學質(zhì)量,收到預(yù)期的教學效果。那么你有了解過教案嗎?以下是小編為大家收集的初中數(shù)學教案,僅供參考,希望能夠幫助到大家。
初中數(shù)學教案1
課 題:幾何畫板簡介
教學目標:1)通過幾何畫板課件演示展示其魅力激起興趣
2)了解幾何畫板初步操作
教學重點:讓學生了解幾何畫板的工作界面
教學難點:能用幾何畫板將三角形分成四等份,并用幾何畫板驗證。 教學過程:
一、概述幾何畫板
幾何畫板是專門為數(shù)學學習與教學需要而設(shè)計的軟件。有人說它是電子圓規(guī),有人說它是繪圖儀,有人說它是數(shù)學實驗室。它號稱二十一世紀的動態(tài)幾何。它可幫助我們理解數(shù)學,動態(tài)地表達數(shù)量關(guān)系,并可設(shè)計出許多有用或有趣的作品。
二、幾何畫板作品展示
三、幾何畫板簡介
1)啟動
開始|程序|幾何畫板|幾何畫板。啟動幾何畫板后將出現(xiàn) 菜單、工具、 畫板。工具(從上到下) 選擇 、畫點、畫圓 、畫線、 文本 、對象信息、 腳本工具目錄。
2)操作初步
1、文件
新畫板 打開一個新的空白畫板。
新腳本 打開一個新的空白腳本窗口。用于錄制畫板的`畫圖過程。 打開 打開一個已存在的畫板文件(.gsp)或腳本文件(.gss)。
保存 [保存當前畫板窗口畫板文件或腳本窗口腳本文件],路徑+文件名,確認。
打印預(yù)覽
打印
退出
2、 選擇 幾何畫板的操作都是先選定,后操作。
選工具(選擇 畫點 畫圓 畫線 文本 對象信息 腳本工具目錄) 單擊:工具選項。
選選擇方式 移到選擇按左鍵不放→平移/旋轉(zhuǎn)/縮放;拖曳到平移/旋轉(zhuǎn)/縮放;放→選定。
功能:移動選定的目標按 平移/旋轉(zhuǎn)/縮放 方式移動。
選一個目標 鼠標對準畫板中的目標(點、線、圓等),指針變?yōu)闄M向箭頭,單擊。
選兩個以上目標 法一 第二個及以后,Shift+單擊。
選兩個以上目標 法二 空白處拖曳→虛框;虛框中的目標被選。 選角 選三點:第一、第三點:角兩邊上的點;第二點:頂點。 不選 單擊:空白處。
從多個選中的目標中不選一個 Shift+單擊。
選目標的父母和子女 選定,編輯|選擇父母/或選擇子女。
選所有 編輯|選擇所有。
選畫點/畫圓...,編輯|選擇所有點/圓...。
3、刪除
刪除目標 選目標;Del鍵(注:同時刪除子女目標)。
復原一步 Ctrl+Z = 編輯|復原。
畫板變成空白畫板 Shift+Ctrl+Z = Shift+編輯|復原。
4、顯示
線類型 設(shè)置選定的線/軌跡 為 粗線/細線/虛線。應(yīng)用 使對象更突出。 顏色 設(shè)置選定的圖形的顏色。應(yīng)用 使對象更突出。
字號/字型 設(shè)置選定的標注、符號、測算等文字的字號和字型。
字體 設(shè)置選定的標注、符號、測算等文字的字體。
顯示/隱藏 顯示/隱藏 選定的目標(Ctrl+H)。
顯示所有隱藏 顯示所有的隱藏目標。
顯示符號 顯示/隱藏 選定目標的符號。
符號選項 更改 符號/符號序列。
軌跡跟蹤 設(shè)置/消除 選定目標為軌跡跟蹤狀態(tài)。
動畫 根據(jù)選定的目標條件進行動畫運動。
參數(shù)設(shè)置 角度、弧度、精確度等的設(shè)置。
5、對象信息 單擊對象信息→?;單擊對象→簡單信息;雙擊對象→目標信息對話框。
6、快捷鍵 隱藏Ctrl+H顯示符號Ctrl+K軌跡跟蹤Ctrl+T當前目標可操作的內(nèi)容右鍵。
(以上簡略選講1、2、3)
四、熟悉幾何畫板的界面,了解常用工具的用法,
五、把一個三角形分成四等份:
1)用畫線工具畫一個三形,2)標注:選文本工具,單擊畫好的點,用文本工具雙擊顯示的標簽,可進行修改。
3)選擇“構(gòu)造”,---“畫中點”
六、驗證面積相等:
1)按住shift鍵,選取點。
2)“構(gòu)造”---“多邊形內(nèi)部”。
3)“測算”---“面積”
七、等分線段:
1)畫射線作輔助線。
2)選取一段做標記向量。
3)“變換”---“平移”。
4)“作圖”---“平行線”。
用平行線的性質(zhì)等分線段。
八、畫基本圖形
1、畫點 選畫點,單擊畫板上一點。(并顯示標簽)
2、畫圓 畫圓的兩種方法及區(qū)別。 (設(shè)置不同顯示方式)
3、選線段/射線/直線 選畫線;按左鍵不放→線段/射線/直線
九、課后反思
在圖中標注文本文字,用輔助線把一線段如何分為四等份
初中數(shù)學教案2
教學目標:
1、通過解題,使學生了解到數(shù)學是具有趣味性的。
2、培養(yǎng)學生勤于動腦的習慣。
教學過程:
一、出示趣味題
師:老師這里有一些有趣的`問題,希望大家開動腦筋,積極思考。
1、小衛(wèi)到文具店買文具,他買毛筆用去了所帶錢的一半,買鉛筆用去了剩下錢的一半,最后用去剩下的8分,問小衛(wèi)原有( )錢?
2、蘋蘋做加法,把一個加數(shù)22錯寫成12,算出結(jié)果是48,問正確結(jié)果是( )。
3、小明做減法,把減數(shù)30寫成20,這樣他算出的得數(shù)比正確得數(shù)多
( ),如果小明算出的結(jié)果是10,正確結(jié)果是( )。
4、同學們種樹,要把9棵樹分3行種,每一行都是4棵,你能想出幾種
辦法來用△表示。
5、把一段布5米,一次剪下1米,全部剪下要( )次。
6、李小松有10本本子,送給小剛2本后,兩人本子數(shù)同樣多,小剛原來
有( )本本子。
二、小組討論
三、指名講解
四、評價
1、同學互評
2、老師點評
五、小結(jié)
師:通過今天的學習,你有哪些收獲呢?
初中數(shù)學教案3
問:你會解這個方程嗎?你能否從小敏同學的解法中得到啟發(fā)?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的`“三分之一”改為“二分之一”,那么答案是多少?
同學們動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習
1、教科書第3頁練習1、2。
2、補充練習:檢驗下列各括號內(nèi)的數(shù)是不是它前面方程的解。
。1)x-3(x+2)=6+x(x=3,x=-4)
。2)2y(y-1)=3(y=-1,y=2)
(3)5(x-1)(x-2)=0(x=0,x=1,x=2)
四、小結(jié)。本節(jié)課我們主要學習了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W習體會。
五、作業(yè)。教科書第3頁,習題6。1第1、3題。
解一元一次方程
1、方程的簡單變形
教學目的
通過天平實驗,讓學生在觀察、思考的基礎(chǔ)上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。
重點、難點
1、重點:方程的兩種變形。
2、難點:由具體實例抽象出方程的兩種變形。
教學過程
一、引入
上一節(jié)課我們學習了列方程解簡單的應(yīng)用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學習如何將方程變形。
二、新授
讓我們先做個實驗,拿出預(yù)先準備好的天平和若干砝碼。
測量一些物體的質(zhì)量時,我們將它放在天干的左盤內(nèi),在右盤內(nèi)放上砝碼,當天平處于平衡狀態(tài)時,顯然兩邊的質(zhì)量相等。
如果我們在兩盤內(nèi)同時加入相同質(zhì)量的砝碼,這時天平仍然平衡,天平兩邊盤內(nèi)同時拿去相同質(zhì)量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?
讓同學們觀察圖6.2.1的左邊的天平;天平的左盤內(nèi)有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質(zhì)量相等。如果我們用x表示大砝碼的質(zhì)量,1表示小砝碼的質(zhì)量,那么可用方程x+2=5表示天平兩盤內(nèi)物體的質(zhì)量關(guān)系。
初中數(shù)學教案4
教學目標
(一)知識認知要求
1、回顧收集數(shù)據(jù)的方式、
2、回顧收集數(shù)據(jù)時,如何保證樣本的代表性、
3、回顧頻率、頻數(shù)的概念及計算方法、
4、回顧刻畫數(shù)據(jù)波動的統(tǒng)計量:極差、方差、標準差的概念及計算公式、
5、能利用計算器或計算機求一組數(shù)據(jù)的算術(shù)平均數(shù)、
(二)能力訓練要求
1、熟練掌握本章的知識網(wǎng)絡(luò)結(jié)構(gòu)、
2、經(jīng)歷數(shù)據(jù)的收集與處理的過程,發(fā)展初步的統(tǒng)計意識和數(shù)據(jù)處理能力、
3、經(jīng)歷調(diào)查、統(tǒng)計等活動,在活動中發(fā) 展學生解決問題的能力、
(三)情感與價值觀要求
1、通過對本章內(nèi)容的回顧與思考,發(fā)展學 生用數(shù)學的意識、
2、在活動中培養(yǎng)學生團隊精神、
教學重點
1、建立本章的知識框架圖、
2、體會收集數(shù)據(jù)的方式,保證樣本的代表性,頻率、頻數(shù)及刻畫數(shù)據(jù)離散程度的統(tǒng) 計量在實際情境中的意義和應(yīng)用、
教學難點
收集數(shù)據(jù)的方式、抽樣時保證樣本的代表性、頻率、頻數(shù)、刻畫數(shù)據(jù)離散程度的統(tǒng)計量在不同情境中的應(yīng)用、
教學過程
一、導入新課
本章的內(nèi)容已全部學完、現(xiàn)在如何讓你調(diào)查一個情況、并且根據(jù)你獲得數(shù)據(jù),分析整理,然后寫出調(diào)查報告,我想大家現(xiàn)在心里應(yīng)該有數(shù)、
例如,我們要調(diào)查一下“上網(wǎng)吧的.人的年齡”這一情況,我們應(yīng)如何操作?
先選擇調(diào)查方式,當然這個調(diào)查應(yīng)采用抽樣調(diào)查的方式,因為我們不可能調(diào)查到所有上網(wǎng)吧的人,何況也沒有必要、
同學們感興趣的話,下去以后可以以小組為單位,選擇自己感興趣的事情做調(diào)查,然后再作統(tǒng)計分析,然后把調(diào)查結(jié)果匯報上來,我們可以比一比,哪一個組表現(xiàn)最好?
二、講授新課
1、舉例說明收集數(shù)據(jù)的方式主要有哪幾種類型、
2、抽樣調(diào)查時,如何保證樣本的代表性?舉例說明、
3、舉出與頻數(shù)、頻率有關(guān)的幾個生活實例?
4、刻畫數(shù)據(jù)波動的統(tǒng)計量有 哪些?它們有什么作用?舉例說明、
針對上面的幾個問題,同學們先獨 立思考,然后可在小組內(nèi)交流你的想法,然后我們每組選出代表來回答、
。ń處熆蓞⑴c到學生的討論中,發(fā)現(xiàn)同學們前面知識掌握不好的地方,及時補上)、
收集數(shù)據(jù)的方式有兩種類型:普查和抽樣調(diào)查、
例如:調(diào)查我校八年級同學每天做家庭作業(yè)的時間,我們就可以用普查的形式、
在這次調(diào)查中,總體:我校八年級全體學生每天做家庭作業(yè)的時間;個體:我校八年級每個學生每天做家庭作業(yè)的時間、
用普查的方式可以直接獲得總體情況、但有時總體中個體數(shù)目太多,普查的工作量較大;有時受客觀條件的限制,無法對所有個體進行普查;有時調(diào)查具有破壞性,不允許普查,此時可用抽樣調(diào)查、
例如把上面問題改成“調(diào)查全國八年級同學每天做家庭作業(yè)的時間”,由于個體數(shù)目太多,普查的工作量也較大,此時就采取抽樣調(diào)查,從總體中抽取一個樣本,通過樣本的特征數(shù)字來估計總體,例如平均數(shù)、中位數(shù)、眾數(shù) 、極差、方差等、
上面我們回顧了為了了解某種情況而采取的調(diào)查方式:普查和抽樣調(diào)查,但抽樣調(diào)查必須保證數(shù)據(jù)具有代表性,因為只 有這樣,你抽取的樣本才能體現(xiàn)出總體的情況,不然,就會失去可靠性和準確性、
例如對我們班里某門學科的成績情況,有時不僅知道平均成績,還要知道90分以上占多少,80到90分之間占多少,……,不及格的占多少等,這時,我們只要看一下每個學生的成績落在哪一個分數(shù)段,落在這個分數(shù)段的分數(shù)有幾個,表明數(shù)據(jù)落在這個小組的頻數(shù)就是多少,數(shù)據(jù)落在這個小組的頻率就是頻數(shù)與數(shù)據(jù)總個數(shù)的商、
刻畫數(shù)據(jù)波動的統(tǒng)計量有極差、方差、標準差、它們是用來描述一組數(shù)據(jù)的穩(wěn)定性的、一般而言,一組數(shù)據(jù)的極差、方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定、
例如:某農(nóng)科所在8個試驗點,對甲、乙兩種玉米進行對比試驗,這兩種玉米在各試驗點的畝產(chǎn)量如下(單位:千克)
甲:450 460 450 430 450 460 440 460
乙:440 470 460 440 430 450 470 4 40
在這個試驗點甲、乙兩種玉米哪一種產(chǎn)量比較穩(wěn)定?
我們可以算極差、甲種玉米極差為460-430=30千克;乙種玉米極差為470-430=40千克、所以甲種玉米較穩(wěn)定、
還可以用方差來比較哪一種玉米穩(wěn)定、
s甲2=100,s乙2=200、
s甲2<s乙2,所以甲種玉米的產(chǎn)量較穩(wěn)定、
三、建立知識框架圖
通 過剛才的幾個問題回顧思考了我們這一章的重點內(nèi)容,下面構(gòu)建本章的知識結(jié)構(gòu)圖、
四、隨堂練習
例1一家電腦生產(chǎn)廠家在某城市三個經(jīng)銷本廠產(chǎn)品的大商場調(diào)查,產(chǎn)品的銷量占這三個 大商場同類產(chǎn)品銷量的40%、由此在廣告中宣傳,他們的產(chǎn)品在國內(nèi)同類產(chǎn)品的銷售量占40%、請你根據(jù)所學的統(tǒng)計知識,判斷該宣傳中的數(shù)據(jù)是否可靠:________,理由是________、
分析:這是一道判斷說理型題,它要求借助于統(tǒng)計知識,作出科學的判斷, 同時運 用統(tǒng)計原理給予準確的解釋、因此,該電腦生產(chǎn)廠家憑借挑選某城市經(jīng)銷本產(chǎn)品情況,斷然說他們的產(chǎn)品在國內(nèi)同類產(chǎn)品的銷量占40%,宣傳中的數(shù)據(jù)是不可靠的,其理由有二:第一,所取樣本容量太小;第二,樣本抽取缺乏代表性和廣泛性、
例2在舉國上下眾志成城抗擊“非典” 的斗爭中,疫情變化牽動著全國人民的心 、請根據(jù)下面的疫情統(tǒng)計圖表回答問題:
。1)圖10是5月11日至5月29日全國疫情每天新增數(shù)據(jù)統(tǒng)計走勢圖,觀察后回答:
、倜刻煨略龃_診病例與新增疑似病例人數(shù)之和超過100人的天數(shù)共有__________天;
、谠诒绢}的統(tǒng)計中,新增確診病例的人數(shù)的中位數(shù)是___________;
、郾绢}在對新增確診病例的統(tǒng)計中,樣本是__________,樣本容量是__________、
。2)下表是我國一段時間內(nèi)全國確診病例每天新增的人數(shù)與天數(shù)的頻率統(tǒng)計表、(按人數(shù)分組)
①100人以下的分組組距是________;
②填寫本統(tǒng)計表中未完成的空格;
③在統(tǒng)計的這段時期中,每天新增確診
病例人數(shù)在80人以下的天數(shù)共有_________天、
解:(1)①7 ②26 ③5月11日至29日每天新增確診病例人數(shù) 19
。2)①10人 ②11 40 0、125 0、325 ③25
五.課時小結(jié)
這節(jié)課我們通過回顧與思考這一章的重點內(nèi)容,共同建立的知識框架圖,并進一步用統(tǒng)計的思想和知識解決問題,作出決策、
六.課后作業(yè):
七.活動與探究
從魚塘捕得同時放養(yǎng)的草魚240尾,從中任選9尾,稱得每尾魚的質(zhì)量分別是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(單位:千克)、依此估計這240尾魚的總質(zhì)量大約是
A、300克 B、360千克C、36千克 D、30千克
初中數(shù)學教案5
教學內(nèi)容:在學生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關(guān)系。
教學目標:1、通過對"撲克"有趣的研究,培養(yǎng)起學生對生活中平常小事的關(guān)注。
2、調(diào)動學生豐富的聯(lián)想,養(yǎng)成一種思考的.習慣。
教學重難點:"撲克"與年月日、季度的聯(lián)系。
教學過程:
一、談話引入
師:同學們,這個你們一定見過吧!這是我們生活中比較常見的"撲克"。誰愿意告訴我們,你對撲克的了解呢?
生:......
(教師補充,引發(fā)學生的好奇心。)
師: "撲克"還有一種作用,而且與數(shù)學有關(guān)!
生:......
二、新課
1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬
2、大王=太陽 小王=月亮 紅=白天 黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1
4、所有牌的和+小王=平年的天數(shù)
所有牌的和+小王+大王=閏年的天數(shù)
5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個月
6、365÷7≈52一年有52個星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個星期。
7、一種花色的和=一個季度的天數(shù)
一種花色有13張牌=一個季度有13個星期
三、小結(jié)
生活中有很多的數(shù)學,他每時每刻都在我們的身邊出現(xiàn),只是我們大家沒有注意到。請大家都要學會留心觀察,做生活的有心人。
初中數(shù)學教案6
一、教材的地位與作用
《二元一次方程》是九年義務(wù)教育人教版教材七年級下冊第四章《二元一次方程組》的第一節(jié)。在此之前學生已經(jīng)學習了一元一次方程,這為本節(jié)的學習起了鋪墊的作用。本節(jié)內(nèi)容是二元一次方程的起始部分,因此,在本章的教學中,起著承上啟下的地位。
二、教學目標
(一)知識與技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.會將一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。
(二)數(shù)學思考:
體會學習二元一次方程的必要性,學會獨立思考,體會數(shù)學的轉(zhuǎn)化思想和主元思想。
(三)問題解決:
初步學會利用二元一次方程來解決實際問題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。
(四)情感態(tài)度:
培養(yǎng)學生發(fā)現(xiàn)意識和能力,使其具有強烈的好奇心和求知欲。
三、教學重點與難點
教學重點:二元一次方程及其解的概念。
教學難點:二元一次方程的概念里“含未知數(shù)的項的次數(shù)”的理解;把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。
四、教法與學法分析
教法:情境教學法、比較教學法、閱讀教學法。
學法:閱讀、比較、探究的學習方式。
五、教學過程
1.創(chuàng)設(shè)情境,引入新課
從學生熟悉的姚明受傷事件引入。
師:火箭隊最近取得了20連勝,姚明參加了前面的12場比賽,是球隊的頂梁柱。
。1)連勝的第12場,火箭對公牛,在這場比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個兩分球?(本場比賽姚明沒投中三分球)師:能用方程解決嗎?列出來的方程是什么方程?
。2)連勝的第1場,火箭對勇士,在這場比賽中,姚明得了36分,你知道姚明投中了幾個兩分球,罰進了幾個球嗎?(罰進1球得1分,本場比賽姚明沒投中三分球)師:這個問題能用一元一次方程解決嗎?,你能列出方程嗎?
設(shè)姚明投進了x個兩分球,罰進了y個球,可列出方程。
。3)在雄鹿隊與火箭隊的比賽中易建聯(lián)全場總共得了19分,其中罰球得了3分。你知道他分別投進幾個兩分球、幾個三分球嗎?
設(shè)易建聯(lián)投進了x個兩分球,y個三分球,可列出方程。
師:對于所列出來的三個方程,后面兩個你覺的是一元一次方程嗎?那這兩個方程有什么相同點嗎?你能給它們命一個名稱嗎?
從而揭示課題。
。ㄔO(shè)計意圖:第一個問題主要是讓學生體會一元一次方程是解決實際問題的數(shù)學模型,從而回顧一元一次方程的概念;第二、三問題設(shè)置的主要目的是讓學生體會到當實際問題不能用一元一次方程來解決的時候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數(shù)學來源于生活,又應(yīng)用于生活,通過創(chuàng)設(shè)輕松的問題情境,點燃學習新知識的“導火索”,引起學生的學習興趣,以“我要學”的主人翁姿態(tài)投入學習,而且“會學”“樂學”。)
2.探索交流,汲取新知
概念思辨,歸納二元一次方程的特征
師:那到底什么叫二元一次方程?(學生思考后回答)
師:翻開書本,請同學們把這個概念劃起來,想一想,你覺得和我們自己歸納出來的概念有什么區(qū)別嗎?(同學們思考后回答)
師:根據(jù)概念,你覺得二元一次方程應(yīng)具備哪幾個特征?
活動:你自己構(gòu)造一個二元一次方程。
快速判斷:下列式子中哪些是二元一次方程?
、賦2+y=0②y=2x+
4③2x+1=2x ④ab+b=4
。ㄔO(shè)計意圖:這一環(huán)節(jié)是本課設(shè)計的重點,為加深學生對“含有未知數(shù)的項的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發(fā)學生對“項的次數(shù)”的思考,進而完善學生對二元一次方程概念的理解,通過學生自己舉例子的活動去把“項的次數(shù)”形象化。)
二元一次方程解的概念
師:前面列的兩個方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過方程2x+3y=16,你知道易建聯(lián)可能投中幾個兩分球,幾個三分球嗎?
師:你是怎么考慮的?(讓學生說說他是如何得到x和y的值的,怎么證明自己的這對未知數(shù)的取值是對的)利用一個學生合理的解釋,引導學生類比一元一次方程的解的概念,讓學生歸納出二元一次方程的解的概念及其記法。(學生看書本上的記法)
使二元一次方程兩邊的值相等的一對未知數(shù)的值,叫做二元一次方程的一個解。(設(shè)計意圖:通過引導學生自主取值,猜x和y的值,從而更深刻的體會二元一次方程解的'本質(zhì):使方程左右兩邊相等的一對未知數(shù)的取值。引導學生看書本,目的是讓學生在記法上體會“一對未知數(shù)的取值”的真正含義。)
二元一次方程解的不唯一性
對于2x+3y=16,你覺得這個方程還有其它的解嗎?你能試著寫幾個嗎?師:這些解你們是如何算出來的?
。ㄔO(shè)計意圖:設(shè)計此環(huán)節(jié),目的有三個:首先,是讓學生學會如何檢驗一對未知數(shù)的取值是二元一次方程的解;其次是讓學生體會到二元一次方程的解的不唯一性;最后讓學生感受如何得到一個正確的解:只要取定一個未知數(shù)的取值,就可以代入方程算出另一個未知數(shù)的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解
例:已知方程3x+2y=10,
。1)當x=2時,求所對應(yīng)的y的值;
。2)取一個你自己喜歡的數(shù)作為x的值,求所對應(yīng)的y的值;
。3)用含x的代數(shù)式表示y;
(4)用含y的代數(shù)式表示x;
(5)當x=負2,0時,所對應(yīng)的y的值是多少?
(6)寫出方程3x+2y=10的三個解.
。ㄔO(shè)計意圖:此處設(shè)計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后把它與原方程比較,把一個未知數(shù)的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程,實質(zhì)是解一個關(guān)于y的一元一次方程,滲透數(shù)學的主元思想。以此突破本節(jié)課的難點。)
大顯身手:
課內(nèi)練習第2題
梳理知識,課堂升華
本節(jié)課你有收獲嗎?能和大家說說你的感想嗎?3.作業(yè)布置
必做題:書本作業(yè)題1、2、3、4。
選做題:書本作業(yè)題5、6。
設(shè)計說明
本節(jié)授課內(nèi)容屬于概念課教學。數(shù)學學科的內(nèi)容有其固有的組成規(guī)律和邏輯結(jié)構(gòu),它總是由一些最基本的數(shù)學概念作為核心和邏輯起點,形成系統(tǒng)的數(shù)學知識,所以數(shù)學概念是數(shù)學課程的核心。只有真正理解數(shù)學概念,才能理解數(shù)學。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關(guān)鍵如何理解它的概念,因此本節(jié)課采用先讓同學自己試著下定義,然后與教材中的完整定義相互比較,發(fā)現(xiàn)不同點,進而理解“含有未知數(shù)的項的次數(shù)都是一次”這句話的內(nèi)涵。在二元一次方程的解的教學過程中,采用的是讓學生體會“一個解、不止一個解、無數(shù)個解”的漸進過程,感受到用一個二元一次方程并不能求出一對確定的未知數(shù)的取值,從而讓學生產(chǎn)生有后續(xù)學習的愿望。
在講授用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的時候,采用“特殊、一般、特殊”的教學流程,以期突破難點。首先拋出問題“這幾個解你是如何求的”,
此時注意的聚焦點是二元一次方程;其次學生歸納先定一個未知數(shù)的取值,代入原方程求另一個未知數(shù)的值,此時注意的聚焦點是一元一次方程;然后教師引導回到二元一次方程,假如x是一個常數(shù),那么這個方程可以看成是一個關(guān)于誰的一元一次方程,此時注意的聚焦點是原來的二元一次方程;最后代入求值,此時注意的聚焦點是等號右邊的那個算式,體會“用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”在求值過程中的簡潔性,強化這種代數(shù)形式。另外,在引導學生推導“用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù)”的過程中,滲透數(shù)學的主元思想和轉(zhuǎn)化思想。
初中數(shù)學教案7
教學目標:
1、使學生學會較熟煉地運用切線的判定方法和切線的性質(zhì)證明問題.
2、掌握運用切線的性質(zhì)和切線的判定的有關(guān)問題中輔助線引法的基本規(guī)律.
教學重點:
使學生準確、熟煉、靈活地運用切線的判定方法及其性質(zhì).教學難點:學生對題目不能準確地進行論證.證題中常會出現(xiàn)不知如何入手,不知往哪個方向證的情形.
教學過程:
一、新課引入:
我們已經(jīng)系統(tǒng)地學習了切線的判定方法和切線的性質(zhì),現(xiàn)在我們來利用這些知識證明有關(guān)幾何問題.
二、新課講解:
實際上在幾何證明題中,我們更多地將切線的判定定理和性質(zhì)定理應(yīng)用在具體的問題中,而一道幾何題的分析過程,是證題中的最關(guān)鍵步驟.p.109例3如圖7-58,已知:ab是⊙o的直徑,bc是⊙o的'切線,切點為b,oc平行于弦ad.求證:dc是⊙o的切線.
分析:欲證cd是⊙o的切線,d是⊙o的弦ad的一個端點當然在⊙o上,屬于公共點已給定,而證直線是圓的切線的情形.所以輔助線應(yīng)該是連結(jié)oc.只要證od⊥cd即可.亦就是證∠odc=90°,所以只要證∠odc=∠obc即可,觀察圖形,兩個角分別位于△odc和△obc中,如果兩個三角形相似或全等都可以產(chǎn)生對應(yīng)角相等的結(jié)果.而圖形中已存在明顯的條件od=ob,oc=oc,只要證∠3=∠4,便可造成兩個三角形全等.
∠3如何等于∠4呢?題中還有一個已知條件ad∥oc,平行的位置關(guān)系,可以造成角的相等關(guān)系,從而導致∠3=∠4.命題得證.證明:連結(jié)od.教師向?qū)W生解釋書上的證題格式屬于推出法和因為所以法的聯(lián)用,以后證題中同學可以借鑒.p.110例4如圖7-59,在以o為圓心的兩個同心圓中,大圓的弦ab和cd相等,且ab與小圓相切于點e求證:cd與小圓相切.
分析:欲證cd與小⊙o相切,但讀題后發(fā)現(xiàn)直線cd與小⊙o并未已知公共點.這個時候我們必須從圓心o向cd作垂線,設(shè)垂足為f.此時f點在直線cd上,如果我們能證得of等于小⊙o的半徑,則說明點f必在小⊙o上,即可根據(jù)切線的判定定理認定cd與小⊙o相切.題目中已告訴我們ab切小⊙o于e,連結(jié)oe,便得到小⊙o的一條半徑,再根據(jù)大⊙o中弦相等則弦心距也相等,則可得到of=oe.證明:連結(jié)oe,過o作of⊥cd,重足為f.
請同學們注意本題中證一條直線是圓的切線時,這種證明途徑是由直線與圓的公共點來給定所決定的.
練習一
p.111,1.已知:oc平分∠aob,d是oc上任意一點,⊙d與oa相切于點e.求證:ob與⊙d相切.分析:審題后發(fā)現(xiàn)欲證的ob與⊙d相切,屬于ob與⊙d無公共點的情況.這時應(yīng)從圓心d向⊙b作垂線,垂足為f,然后證垂線段df等于⊙b的一條半徑,而題目中已給oa與⊙d切于點e,只要連結(jié)de.再根據(jù)角平分線的性質(zhì),問題便得到解決.證明:連結(jié)de,作df⊥ob,重足為f.p.111中2.已知如圖7-61,△abc為等腰三角形,o是底邊bc的中點,⊙o與腰ab相切于點d.求證:ac與⊙o相切.
分析:欲證ac與⊙o相切,同第1題一樣,同屬于直線與圓的公共點未給定情況.輔助線的方法同第1題,證法類同.只不過要針對本題特點還要連結(jié)oa.從等腰三角形的”三線合一”的性質(zhì)出發(fā),證得oa平分∠bac,然后再根據(jù)角平分線的性質(zhì),使問題得到證明.證明:連結(jié)od、oa,作oe⊥ac,垂足為e.同學們想一想,在證明oe=od時,還可以怎樣證?
(答案)可通過“角、角、邊”證rt△odb≌rt△oec.
三、新課講解
。簽榕囵B(yǎng)學生閱讀教材的習慣讓學生閱讀109頁到110頁.從中總結(jié)出本課的主要內(nèi)容:
1.在證題中熟練應(yīng)用切線的判定方法和切線的性質(zhì).
2.在證明一條直線是圓的切線時,只能遇到兩種情形之一,針對不同的情形,選擇恰當?shù)淖C明途徑,務(wù)必使同學們真正掌握.
(1)公共點已給定.做法是“連結(jié)”半徑,讓半徑“垂直”于直線.
(2)公共點未給定.做法是從圓心向直線“作垂線”,證“垂線段等于半徑”.
四、布置作業(yè)
1.教材p.116中8、9.2.教材p.117中2.
初中數(shù)學教案8
一、內(nèi)容和內(nèi)容解析
。ㄒ唬﹥(nèi)容
概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡單不等式的解集.
。ǘ﹥(nèi)容解析
現(xiàn)實生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系.本節(jié)課從生活實際出發(fā)導入常見行程問題的不等關(guān)系,使學生充分認識到學習不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對實例的進一步深入分析與探索,引出不等式、不等式的解、不等式的解集以及解不等式幾個概念.前面學過方程、方程的解、解方程的概念.通過類比教學、不等式、不等式的解、解不等式幾個概念不難理解.但是對于初學者而言,不等式的解集的理解就有一定的難度.因此教材又進行數(shù)形結(jié)合,用數(shù)軸來表示不等式的解集,這樣直觀形象的表示不等式的解集,對理解不等式的解集有很大的幫助.基于以上分析,可以確定本節(jié)課的教學重點是:正確理解不等式、不等式的解與解集的意義,把不等式的解集正確地表示在數(shù)軸上.
二、目標和目標解析
。ㄒ唬┙虒W目標
1.理解不等式的概念
2.理解不等式的解與解集的意義,理解它們的區(qū)別與聯(lián)系
3.了解解不等式的概念
4.用數(shù)軸來表示簡單不等式的解集
。ǘ┠繕私馕
1.達成目標1的標志是:能正確區(qū)別不等式、等式以及代數(shù)式.
2.達成目標2的標志是:能理解不等式的解是解集中的某一個元素,而解集是所有解組成的一個集合.
3.達成目標3的標志是:理解解不等式是求不等式解集的一個過程.
4、達成目標4的標志是:用數(shù)軸表示不等式的解集是數(shù)形結(jié)合的又一個重要體現(xiàn),也是學習不等式的一種重要工具.操作時,要掌握好“兩定”:一是定界點,一般在數(shù)軸上只標出原點和界點即可,邊界點含于解集中用實心圓點,或者用空心圓點;二是定方向,小于向左,大于向右.
三、教學問題診斷分析
本節(jié)課實質(zhì)是一節(jié)概念課,對于不等式、不等式的解以及解不等式可通過類比方程、方程的解、解方程類比教學,學生不難理解,但是對不等式的解集的理解就有一定的難度.
因此,本節(jié)課的教學難點是:理解不等式解集的意義以及在數(shù)軸上正確表示不等式的解集.
四、教學支持條件分析
利用多媒體直觀演示課前引入問題,激發(fā)學生的學習興趣.
五、教學過程設(shè)計
。ㄒ唬﹦赢嬔菔厩榫凹とざ嗝襟w演示:兩個體重相同的孩子正在蹺蹺板上做游戲,現(xiàn)在換了一個大人上去,蹺蹺板發(fā)生了傾斜,游戲無法繼續(xù)進行下去了,這是什么原因呢?設(shè)計意圖:通過實例創(chuàng)設(shè)情境,從“等”過渡到“不等”,培養(yǎng)學生的觀察能力,分析能力,激發(fā)他們的'學習興趣.
。ǘ┝⒆銓嶋H引出新知
問題一輛勻速行駛的汽車在11︰20距離a地50km,要在12︰00之前駛過a地,車速應(yīng)滿足什么條件?
小組討論,合作交流,然后小組反饋交流結(jié)果.最后,老師將小組反饋意見進行整理(學生沒有討論出來的思路老師進行補充)
1.從時間方面慮:
2.從行程方面:<>50 3.從速度方面考慮:x>50÷
設(shè)計意圖:培養(yǎng)學生合作、交流的意識習慣,使他們積極參與問題的討論,并敢于發(fā)表自己的見解.老師對問題解決方法的梳理與補充,發(fā)散學生思維,培養(yǎng)學生分析問題、解決問題的能力.
。ㄈ┚o扣問題概念辨析
1.不等式
設(shè)問1:什么是不等式?
設(shè)問2:能否舉例說明?由學生自學,老師可作適當補充.比如:是不等式.
2.不等式的解
設(shè)問1:什么是不等式的解?設(shè)問
2:不等式的解是唯一的嗎?由學生自學再討論.
老師點撥:由x>50÷得x>75說明x任意取一個大于75的數(shù)都是不等式
3.不等式的解集
設(shè)問1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都設(shè)問
2:不等式的解集與不等式的解有什么區(qū)別與聯(lián)系?由學生自學后再小組合作交流.
老師點撥:不等式的解是不等式解集中的一個元素,而不等式的解集是不等式所有解組成的一個集合.
4.解不等式
設(shè)問1:什么是解不等式?由學生回答.
老師強調(diào):解不等式是一個過程.
設(shè)計意圖:培養(yǎng)學生的自學能力,進一步培養(yǎng)學生合作交流的意識.遵循學生的認知規(guī)律,有意識、有計劃、有條理地設(shè)計一些問題,可以讓學生始終處于積極的思維狀態(tài),不知不覺中接受了新知識.老師再適當點撥,加深理解.
。ㄋ模⿺(shù)形結(jié)合,深化認識
問題1:由上可知,x>75既是不等式的解集.那么在數(shù)軸上如何表示x>75呢?問題
2:如果在數(shù)軸上表示x≤ 75,又如何表示呢?由老師講解,注意規(guī)范性,準確性.老師適當補充:“≥”與“≤”的意義,并強調(diào)用“≥”或“≤”連接的式子也是不等式.比如x≤ 75就是不等式.
設(shè)計意圖:通過數(shù)軸的直觀讓學生對不等式的解集進一步加深理解,滲透數(shù)形結(jié)合思想.
。ㄎ澹w納小結(jié),反思
提高教師與學生一起回顧本節(jié)課所學主要內(nèi)容,并請學生回答如下問題
1、什么是不等式?
。嫉慕饧,也是不等式>50
2、什么是不等式的解?
3、什么是不等式的解集,它與不等式的解有什么區(qū)別與聯(lián)系?
4、用數(shù)軸表示不等式的解集要注意哪些方面?
設(shè)計意圖:歸納本節(jié)課的主要內(nèi)容,交流心得,不斷積累學習經(jīng)驗.
(六)布置作業(yè),課外反饋
教科書第119頁第1題,第120頁第2,3題.
設(shè)計意圖:通過課后作業(yè),教師及時了解學生對本節(jié)課知識的掌握情況,以便對教學進度和方法進行適當?shù)恼{(diào)整.
六、目標檢測設(shè)計1.填空
下列式子中屬于不等式的有___________________________
、賦 +7>
、冖趚≥ y + 2 = 0④ 5x + 7設(shè)計意圖:讓學生正確區(qū)分不等式、等式與代數(shù)式,進一步鞏固不等式的概念.
2.用不等式表示① a與5的和小于7 ② a的與b的3倍的和是非負數(shù)
、壅叫蔚倪呴L為xcm,它的周長不超過160cm,求x滿足的條件設(shè)計意圖:培養(yǎng)學生審題能力,既要正確抓住題目中的關(guān)鍵詞,如“大于(小于)、非負數(shù)(正數(shù)或負數(shù))、不超過(不低于)”等等,正確選擇不等號,又要注意實際問題中的數(shù)量的實際意義.
初中數(shù)學教案9
一、教學目標:
1.知識目標:
、倌軠蚀_理解絕對值的幾何意義和代數(shù)意義。
②能準確熟練地求一個有理數(shù)的絕對值。
③使學生知道絕對值是一個非負數(shù),能更深刻地理解相反數(shù)的概念。
2.能力目標:
、俪醪脚囵B(yǎng)學生觀察、分析、歸納和概括的思維能力。
②初步培養(yǎng)學生由抽象到具體再到抽象的思維能力。
3.情感目標:
、偻ㄟ^向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學生領(lǐng)略到數(shù)學的奧妙,從而激起他們的好奇心和求知欲望。
、谕ㄟ^課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數(shù)學的快樂,從而增強他們的自信心。
二、教學重點和難點
教學重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。
教學難點:絕對值定義的得出、意義的理解及求一個負數(shù)的`絕對值。
三、教學方法
啟發(fā)引導式、討論式和談話法
四、教學過程
。ㄒ唬⿵土曁釂
問題:相反數(shù)6與-6在數(shù)軸上與原點的距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?
(二)新授
1.引入
結(jié)合教材P63圖2-11和復習問題,講解6與-6的絕對值的意義。
2.數(shù)a的絕對值的意義
①幾何意義
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離。數(shù)a的絕對值記作|a|.
舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進行講解。)
強調(diào):表示0的點與原點的距離是0,所以|0|=0.
指出:表示“距離”的數(shù)是非負數(shù),所以絕對值是一個非負數(shù)。
、诖鷶(shù)意義
把有理數(shù)分成正數(shù)、零、負數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0.
用字母a表示數(shù),則絕對值的代數(shù)意義可以表示為:
指出:絕對值的代數(shù)定義可以作為求一個數(shù)的絕對值的方法。
3.例題精講
例1.求8,-8,,-的絕對值。
按教材方法講解。
例2.計算:|2.5|+|-3|-|-3|.
解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3
例3.已知一個數(shù)的絕對值等于2,求這個數(shù)。
解:∵|2|=2,|-2|=2
∴這個數(shù)是2或-2.
五、鞏固練習
練習一:教材P641、2,P66習題2.4A組1、2.
練習二:
1.絕對值小于4的整數(shù)是____.
2.絕對值最小的數(shù)是____.
3.已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。
六、歸納小結(jié)
本節(jié)課從幾何與代數(shù)兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數(shù)的絕對值都是非負數(shù)。絕對值的代數(shù)意義可以作為求一個數(shù)的絕對值的方法。
七、布置作業(yè)
教材P66習題2.4A組3、4、5.
初中數(shù)學教案10
教學目標
1.使學生在了解代數(shù)式概念的基礎(chǔ)上,能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;
2.初步培養(yǎng)學生觀察、分析和抽象思維的能力.
教學重點和難點
重點:列代數(shù)式.
難點:弄清楚語句中各數(shù)量的意義及相互關(guān)系.
課堂教學過程設(shè)計
一、從學生原有的認知結(jié)構(gòu)提出問題
1庇么數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;(-7)
(4)乙數(shù)比x大16%((1+16%)x)
(應(yīng)用引導的方法啟發(fā)學生解答本題)
2痹詿數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習中的問題一樣,這一點同學們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字敘述的一句話或計算關(guān)系式(即日常生活語言)列成代數(shù)式北窘誑撾頤薔屠匆黃鷓習這個問題
二、講授新課
例1用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5;(2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7;(4)乙數(shù)比甲數(shù)大16%
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x
(本題應(yīng)由學生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x
例2用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的與乙數(shù)的的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)
(本題應(yīng)由學生口答,教師板書完成)
此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律鋇玜與b的差指的是(a-b),而b與a的差指的是(b-a)繃秸咼饗圓煌,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運算順序
例3用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)
分析本題時,可提出以下問題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的.數(shù)呢?
解:(1)3n;(2)5m+2
(這個例子直接為以后讓學生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準備)
例4設(shè)字母a表示一個數(shù),用代數(shù)式表示:
(1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的;
(3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的的和
分析:啟發(fā)學生,做分析練習比緄1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a
(通過本例的講解,應(yīng)使學生逐步掌握把較復雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學生分析問題和解決問題的能力)
例5設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個;(2)(m)m個
三、課堂練習
1鄙杓資為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的的和;(2)甲數(shù)的與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商
2庇么數(shù)式表示:
(1)比a與b的和小3的數(shù);(2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù);(4)比a除b的商的3倍大8的數(shù)
3庇么數(shù)式表示:
(1)與a-1的和是25的數(shù);(2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù);(4)除以(y+3)的商是y的數(shù)
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)薄
四、師生共同小結(jié)
首先,請學生回答:
1痹躚列代數(shù)式?2繃寫數(shù)式的關(guān)鍵是什么?
其次,教師在學生回答上述問題的基礎(chǔ)上,指出:對于較復雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(代數(shù)式的形式不唯一);
(2)要善于把較復雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;
(3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學習列方程解應(yīng)用題做準備幣求學生一定要牢固掌握
五、作業(yè)
1庇么數(shù)式表示:
(1)體校里男生人數(shù)占學生總數(shù)的60%,女生人數(shù)是a,學生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學生人數(shù)之比是1∶10,教練人數(shù)是多?
2幣閻一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積.
學法探究
已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?
分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看有沒有規(guī)律.
當圓環(huán)為三個的時候,如圖:
此時鏈長為,這個結(jié)論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:
解:=99a+b(cm)
今天的內(nèi)容就介紹到這里了。
初中數(shù)學教案11
一、教材分析
本節(jié)課是人民教育出版社義務(wù)教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。
二、教學目標
1、知識目標:了解多邊形內(nèi)角和公式。
2、數(shù)學思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及數(shù)學結(jié)論的確定性,提高學生學習熱情。
三、教學重、難點
重點:探索多邊形內(nèi)角和。
難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
四、教學方法:引導發(fā)現(xiàn)法、討論法
五、教具、學具
教具:多媒體課件
學具:三角板、量角器
六、教學媒體:大屏幕、實物投影
七、教學過程:
(一)創(chuàng)設(shè)情境,設(shè)疑激思
師:大家都知道三角形的內(nèi)角和是180,那么四邊形的內(nèi)角和,你知道嗎?
活動一:探究四邊形內(nèi)角和。
在獨立探索的基礎(chǔ)上,學生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360。
方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360。
接下來,教師在方法二的基礎(chǔ)上引導學生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。
學生先獨立思考每個問題再分組討論。
關(guān)注:
。1)學生能否類比四邊形的方式解決問題得出正確的結(jié)論。
(2)學生能否采用不同的方法。
學生分組討論后進行交流(五邊形的內(nèi)角和)
方法1:把五邊形分成三個三角形,3個180的和是540。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180的.和減去一個周角360。結(jié)果得540。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結(jié)果得540。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結(jié)果得540。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內(nèi)角和之后,同學們又認真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720,十邊形內(nèi)角和是1440。
(二)引申思考,培養(yǎng)創(chuàng)新
師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
活動三:探究任意多邊形的內(nèi)角和公式。
思考:
。1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
。2)多邊形的邊數(shù)與內(nèi)角和的關(guān)系?
。3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
學生結(jié)合思考題進行討論,并把討論后的結(jié)果進行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180的和,五邊形內(nèi)角和是3個180的和,六邊形內(nèi)角和是4個180的和,十邊形內(nèi)角和是8個180的和。發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
得出結(jié)論:多邊形內(nèi)角和公式:(n-2)·180。
(三)實際應(yīng)用,優(yōu)勢互補
1、口答:(1)七邊形內(nèi)角和()
。2)九邊形內(nèi)角和()
。3)十邊形內(nèi)角和()
2、搶答:(1)一個多邊形的內(nèi)角和等于1260,它是幾邊形?
。2)一個多邊形的內(nèi)角和是1440,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
3、討論回答:一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多540,并且這個多邊形的各個內(nèi)角都相等,這個多邊形每個內(nèi)角等于多少度?
(四)概括存儲
學生自己歸納總結(jié):
1、多邊形內(nèi)角和公式
2、運用轉(zhuǎn)化思想解決數(shù)學問題
3、用數(shù)形結(jié)合的思想解決問題
(五)作業(yè):練習冊第93頁1、2、3
八、教學反思:
1、教的轉(zhuǎn)變
本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
2、學的轉(zhuǎn)變
學生的角色從學會轉(zhuǎn)變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變
整節(jié)課以“流暢、開放、合作、隱導”為基本特征,教師對學生的思維減少干預(yù),教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
初中數(shù)學教案12
一、素質(zhì)教育目標
。ㄒ唬┲R教學點:
使學生會用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用問題
。ǘ┠芰τ柧汓c:
進一步培養(yǎng)學生化實際問題為數(shù)學問題的能力和分析問題解決問題的能力,培養(yǎng)用數(shù)學的意識
二、教學重點、難點
1.教學重點:
會用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用題
2.教學難點:
找等量關(guān)系列一元二次方程解應(yīng)用題時,應(yīng)注意是方程的解,但不一定符合題意,因此求解后一定要檢驗,以確定適合題意的解.例如線段的長度不為負值,人的個數(shù)不能為分數(shù)等
三、教學步驟
(一)明確目標
。ǘ┱w感知
(三)重點、難點的學習和目標完成過程
1.復習提問
(1)列方程解應(yīng)用題的步驟?
。2)長方形的周長、面積?長方體的體積?
2.例1?現(xiàn)有長方形紙片一張,長19cm,寬15cm,需要剪去邊長是多少的小正方形才能做成底面積為77cm2的無蓋長方體型的紙盒?
解:設(shè)需要剪去的小正方形邊長為xcm,則盒底面長方形的長為(19—2x)cm,寬為(15—2x)cm,
據(jù)題意:(19—2x)(15—2x)=77
整理后,得x2—17x+52=0,
解得x1=4,x2=13
∴當x=13時,15—2x=—11(不合題意,舍去)
答:截取的小正方形邊長應(yīng)為4cm,可制成符合要求的無蓋盒子
練習1章節(jié)前引例.
學生筆答、板書、評價
練習2教材P。42中4
學生筆答、板書、評價
注意:全面積=各部分面積之和
剩余面積=原面積—截取面積
例2要做一個容積為750cm3,高是6cm,底面的長比寬多5cm的長方形匣子,底面的長及寬應(yīng)該各是多少(精確到0。1cm)?
分析:底面的長和寬均可用含未知數(shù)的代數(shù)式表示,則長×寬×高=體積,這樣便可得到含有未知數(shù)的等式——方程
解:長方體底面的寬為xcm,則長為(x+5)cm,
解:長方體底面的.寬為xcm,則長為(x+5)cm,
據(jù)題意,6x(x+5)=750,
整理后,得x2+5x—125=0
解這個方程x1=9。0,x2=—14。0(不合題意,舍去)
當x=9。0時,x+17=26。0,x+12=21。0.
答:可以選用寬為21cm,長為26cm的長方形鐵皮
教師引導,學生板書,筆答,評價
。ㄋ模┛偨Y(jié)、擴展
1.有關(guān)面積和體積的應(yīng)用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關(guān)系
2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問題,例如線段的長不能為負
3.進一步體會數(shù)字在實踐中的應(yīng)用,培養(yǎng)學生分析問題、解決問題的能力
四、布置作業(yè)
教材P42中A3、6、7
教材P41中3、4
五、板書設(shè)計
初中數(shù)學教案13
教學建議
知識結(jié)構(gòu)
重難點分析
本節(jié)的重點是的性質(zhì)和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學習的正方形的基礎(chǔ)。
本節(jié)的難點是性質(zhì)的靈活應(yīng)用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。如果得到一個平行四邊形是,就可以得到許多關(guān)于邊、角、對角線的條件,在實際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學生手足無措,教師在教學過程中應(yīng)給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關(guān)系,建議教師在教學過程中注意以下問題:
1.的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。
2.在現(xiàn)實中的實例較多,在講解的性質(zhì)和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學生的參與感又鞏固了所學的知識.
3.如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導學生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.
4.在對性質(zhì)的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.
5.由于和的性質(zhì)定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.
6.在性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。
一、教學目標
1.掌握概念,知道與平行四邊形的關(guān)系.
2.掌握的性質(zhì).
3.通過運用知識解決具體問題,提高分析能力和觀察能力.
4.通過教具的演示培養(yǎng)學生的學習興趣.
5.根據(jù)平行四邊形與矩形、的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.
6.通過性質(zhì)的學習,體會的圖形美.
二、教法設(shè)計
觀察分析討論相結(jié)合的方法
三、重點·難點·疑點及解決辦法
1.教學重點:的性質(zhì)定理.
2.教學難點:把的性質(zhì)和直角三角形的知識綜合應(yīng)用.
3.疑點:與矩形的性質(zhì)的區(qū)別.
四、課時安排
1課時
五、教具學具準備
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設(shè)計
教師演示教具、創(chuàng)設(shè)情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥
七、教學步驟
【復習提問】
1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?
2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角.
3.矩形的一個角的'平分線把較長的邊分成、,求矩形的周長.
【引入新課】
我們已經(jīng)學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出概念.
【講解新課】
1.定義:有一組鄰邊相等的平行四邊形叫做.
講解這個定義時,要抓住概念的本質(zhì),應(yīng)突出兩條:
。1)強調(diào)是平行四邊形.
。2)一組鄰邊相等.
2.的性質(zhì):
教師強調(diào),既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質(zhì),此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質(zhì).
下面研究的性質(zhì):
師:同學們根據(jù)的定義結(jié)合圖形猜一下有什么性質(zhì)(讓學生們討論,并引導學生分別從邊、角、對角線三個方面分析).
生:因為是有一組鄰邊相等的平行四邊形,所以根據(jù)平行四邊形對邊相等的性質(zhì)可以得到.
性質(zhì)定理1:的四條邊都相等.
由的四條邊都相等,根據(jù)平行四邊形對角線互相平分,可以得到
性質(zhì)定理2:的對角線互相垂直并且每一條對角線平分一組對角.
引導學生完成定理的規(guī)范證明.
師:觀察右圖,被對角線分成的四個直角三角形有什么關(guān)系?
生:全等.
師:它們的底和高和兩條對角線有什么關(guān)系?
生:分別是兩條對角線的一半.
師:如果設(shè)的兩條對角線分別為、,則的面積是什么?
生:
教師指出當不易求出對角線長時,就用平行四邊形面積的一般計算方法計算面積.
例2已知:如右圖,是△的角平分線,交于,交于.
求證:四邊形是.
。ㄒ龑W生用定義來判定.)
例3已知的邊長為,,對角線,相交于點,如右圖,求這個的對角線長和面積.
。1)按教材的方法求面積.
(2)還可以引導學生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計算的面積.
【總結(jié)、擴展】
1.小結(jié):(打出投影)(圖4)
。1)、平行四邊形、四邊形的從屬關(guān)系:
。2)性質(zhì):圖5
、倬哂衅叫兴倪呅蔚乃行再|(zhì).
、谔赜行再|(zhì):四條邊相等;對角線互相垂直,且平分每一組對角.
八、布置作業(yè)
教材P158中6、7、8,P196中10
九、板書設(shè)計
標題
定義……
性質(zhì)例2…… 小結(jié):
性質(zhì)定理1:……例3…… ……
性質(zhì)定理2:……
十、隨堂練習
教材P151中1、2、3
補充
1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.
2.周長為80,一對角線為20,則相鄰兩角的度數(shù)為___________、____________.
初中數(shù)學教案14
學情分析:
高三(7)是我校理科重點班,該班的學生具有良好的數(shù)學功底,處于復習階段的他們目標更明確,學習熱情高,課堂投入,思考積極。就本節(jié)開課的內(nèi)容而言,學生已掌握了“對稱問題”本質(zhì)屬性,能夠從圖象和表達式上準確地理解對稱問題。但也只是停留在就事論事的基礎(chǔ)上,對問題的抽象、歸納概括,引申拓展還缺乏一定的能力和意識。對于周期概念,學生沒有什么的問題。
教材分析:
1.對稱問題是高中數(shù)學中比較難的問題,學生一般由于問題的抽象性,同時由于這中間存在關(guān)于點對稱和關(guān)于直線對稱這兩類問題,而它們的數(shù)學表達式又是那么相似,學生如果沒有真正理解很難分清誰是誰非。而且在高考的問題中經(jīng)常會碰到,因此有必要加以澄清和深化理解。
2.對稱問題和周期問題也存在一定的聯(lián)系,本節(jié)可以通過足夠的條件闡明這一聯(lián)系的實質(zhì)。
教學目標:
理解一個函數(shù)存在兩次對稱(可能關(guān)于兩個點對稱或兩條直線對稱或一個點加上一個對直線)時,如何判斷函數(shù)具有周期性。
重點和難點:
具有兩次對稱問題的抽象函數(shù)具有周期性,而且要求求出周期。
教學方法:
從簡單到復雜,以啟發(fā)思想為指導,精講重思,暴露學生的思維,使學生整節(jié)課都處于思考之中。
教學程序:
一、引入
師:當一個人站在一面鏡子前,面對鏡子一定的距離,那么在鏡中的像有什么特征?
生:(物理常識)人和像關(guān)于鏡子對稱。
師:現(xiàn)在在此人的身后再放一面鏡子,鏡面對著人的背面,此時在此人面前的鏡子中的像又是什么?
生:如果鏡子夠大的話,里面將是無數(shù)個排列的人。
師:道理何在?
生:首先是人在前面鏡中的像連同人一起要在后面鏡中成像,這一像反過來連同人又在前面鏡中成像,這樣反反復復,就得到了無數(shù)個人像,而且具有周期性(即圖象重復出現(xiàn))。
師:如果將人看成一段函數(shù),將鏡子看成一條對稱軸,那么整個函數(shù)的圖象應(yīng)該是怎樣的(圖象具有什么特征)。
引入課題:對稱+對稱=?
二、探究
回顧:關(guān)于圖象的對稱問題分為兩類:一類是關(guān)于點對稱,另一類是關(guān)于直線對稱,今天我們來研究一般的函數(shù)對稱問題,我們從函數(shù)表達式來研究,對于直線對稱:若f(x)關(guān)于x=a對稱,則有f(x)=f(2a-x)或f(a+x)=f(a-x);對于點對稱:f(x)關(guān)于(a,0)對稱,則有f(x)=-(2a-x)或f(a+x)=-f(a-x)。
對于奇函數(shù)[f(x)=-f(-x)]和偶函數(shù)[f(x)=f(-x)],則是這兩類對稱中的特例。
延伸:若是f(a+x)=f(b+x),則函數(shù)關(guān)于什么對稱(關(guān)于直線x=(a+b)/2對稱)
提問:請同學們找?guī)讉關(guān)于直線x=a對稱的函數(shù)的表達式?
生:f(4a-x)=f(6a+x)
下面研究當函數(shù)具有兩次對稱時,結(jié)果有什么特征?
問題設(shè)計:
、俸瘮(shù)f(x)
(1)是偶函數(shù)
。2)關(guān)于x=a對稱
分析:由條件(2),可得f(a+x)=f(a-x),又由條件(1),所以f(x+a)=f(x-a)。
(以x+a代替上式中的x),所以f(x)=f(2a+x),由周期定義f(x)=f(T+x),所以f(x)是以|2a|為周期的函數(shù)
、诤瘮(shù)f(x)
。1)是奇函數(shù)
(2)關(guān)于x=a對稱
分析:由條件(2),可得f(x)=f(2a-x)又由條件(1)f(x)=-f(-x),所以-f(-x)=f(2a-x),即-f(x)=f(2a+x),所以f(4a+x)=-f(2a+x)=f(x),可得函數(shù)f(x)是以|4a|為周期的函數(shù),
以此類推,
、酆瘮(shù)f(x)滿足
。1)是偶函數(shù)
。2)關(guān)于(a,0)對稱
、芎瘮(shù)f(x)滿足
(1)是奇函數(shù)
。2)關(guān)于(a,0)對稱
、莺瘮(shù)f(x)滿足
。1)關(guān)于x=b對稱
。2)關(guān)于x=a對稱
⑥函數(shù)f(x)滿足
。1)關(guān)于(a,0)對稱
。2)關(guān)于(b,0)對稱
、吆瘮(shù)f(x)滿足
。1)關(guān)于x=a對稱
(2)關(guān)于(b,0)對稱
。◣熒餐瓿桑
學生練習:見復習參考書
評教:
教材處理恰當
1.前面的課堂教學中已經(jīng)講了關(guān)于圖象平移,伸縮的問題,對于對稱問題在前面也分析了關(guān)于含絕對值的函數(shù)圖象問題(y=|f(x)|,y=f(|x|))。
2.今天這堂課分析非絕對值的對稱問題,主要是關(guān)于點對稱和直線對稱的問題。
3.下一節(jié)殷老師構(gòu)思,將一個函數(shù)的對稱變成兩個函數(shù)的對稱問題,即如:函數(shù)f(x)和函數(shù)f(-x)的關(guān)系;函數(shù)f(x)和函數(shù)f(2a-x)的關(guān)系;函數(shù)-f(x)和函數(shù)f(2a+x)的關(guān)系,即對照這堂課的內(nèi)容,將一個函數(shù)變成兩個函數(shù),再尋找二者關(guān)系,以便通過其中一個函數(shù)來解決另一個函數(shù)問題。如:已知函數(shù)-f(x)的圖象,畫出函數(shù)f(2a+x)的圖象及分析其性質(zhì)。
。c評:對于教學任務(wù)的分析是一個教師的教學水平的重要標志,同樣的一個教師對教材的處理各不相同,當然所得的結(jié)果也各不相同,我們評一節(jié)課好壞,同時也要關(guān)注這堂課的前述及后續(xù),只有知道前后的內(nèi)容,才能把握上課之人想法,教學思路,處理教材的能力,我認為這樣的處理比較有邏輯性,能夠幫學生梳理知識,使學生對知識的結(jié)構(gòu)比較清晰,符合建構(gòu)主義觀點。這對高考復習內(nèi)容較多的情況下更容易幫助學生的理解,體現(xiàn)上課老師對教材具有較高的處理水平。)
引入貼近生活
數(shù)學知識通常被學生認為是最沒用的,枯燥乏味的,原因是學生在實際生活中的問題很少能夠和數(shù)學聯(lián)系起來,而通常這樣的聯(lián)系確定很難尋找,現(xiàn)在的新教材就加強了這一方面的聯(lián)系,這堂課殷老師就以是實際生活中常見的照鏡子一事引入,這里我覺點有兩個地方比較不錯:
。1)將數(shù)學知識和實際聯(lián)系起來,因此說聯(lián)系還是有的,主要我們沒有仔細體會,沒有這種思維習慣,這樣有聯(lián)系的問題學生就感興趣,自然投入更多了;
。2)更為重要的是,這個引入不但引出了主題,還成功地解決了難點(抽象思維能力),如果是直接給出問題,學生可能不會想到結(jié)論是什么,但是由鏡子引入,學生就很容易理解為什么函數(shù)具有周期性,為接下來從函數(shù)表達式上來分析埋下了墊腳石。對于問題情境的設(shè)置恰當與否,決定了能否激發(fā)學生的求知欲望,能否積極主動地參與到課堂教學中。
可改進之處:對于照鏡子問題,在實際生活同時用兩面鏡子,可能不多,因此學生要推斷也只憑想象再結(jié)合物理知識,可能有學生想出來,那么他對這一問題的理解就憑老師的講解,還是存有疑惑,如果能現(xiàn)實操作,理解會更深,當然不可能真的取來兩面大鏡子,我們可借助于“幾何畫板”數(shù)學教學軟件,它對于對稱問題,操作簡單,下面是本人做的圖片:
(三)問題設(shè)計巧妙
函數(shù)f(x)滿足
。1)是偶函數(shù)
。2)關(guān)于x=a對稱
、诤瘮(shù)f(x)滿足
(1)是奇函數(shù)
。2)關(guān)于x=a對稱
、酆瘮(shù)f(x)滿足
(1)是偶函數(shù)
。2)關(guān)于(a,0)對稱
、芎瘮(shù)f(x)滿足
。1)是奇函數(shù)
。2)關(guān)于(a,0)對稱
、莺瘮(shù)f(x)滿足
(1)關(guān)于x=b對稱
。2)關(guān)于x=a對稱
、藓瘮(shù)f(x)滿足
。1)關(guān)于(a,0)對稱
。2)關(guān)于(b,0)對稱
、吆瘮(shù)f(x)滿足
。1)關(guān)于x=a對稱
(2)關(guān)于(b,0)對稱
題組、變式訓練是提高學生思維能力,分析問題解決問題能力的常用方法
。1)學生能通過辨析達到對問題真正理解,對于突破難點起關(guān)鍵作用。
。2)通過一連串的結(jié)論,使學生在以后拿到類似的問題,會引起重視,究竟是其中哪一種。
同時這里的問題設(shè)計遵循了由易到難,特殊到一般的過程,這和學生的思維認識規(guī)律相符合。
可改進之處:對于這類問題,當然有必要讓學生理解,對于一連串問題的理解經(jīng)過思考和老師的分析是可以理解但是學生的抽象思維能力還是有待于提高的',到最后可能在頭腦里的印象還是比較模糊了,誰是誰非。⑤⑥⑦三個例子均可讓學生自己來演練,以便讓每個學生有獨立思考的機會。以提高學生獨立解決問題的能力,和真正檢測學生對剛才問題的理解程度。
。ㄋ模┥朴诓蹲綒w納
在教學中處處留心,總能發(fā)現(xiàn)點什么,對于平時的練習也是一樣,通過平時作問題,從問題中發(fā)現(xiàn)規(guī)律,進行提練、歸納。這節(jié)課的問題設(shè)計來自殷老師平時的留心觀察,這一點確實提醒我們這些年青教師,要善于觀察、思考、發(fā)現(xiàn)問題,總結(jié)規(guī)律。
(五)分析透徹易懂
課堂45分鐘的效率如何是學生學好每一門課程的關(guān)鍵,教師分析有沒有到位,直接影響著學生的聽課效率,講得多并不是好事,講少了怕學生聽不懂,這是很多新教師關(guān)心的問題,老教師上課時知道講到哪就夠了,知道學生在哪兒可能有疑惑,就重點講解,有些地方一帶而過,這節(jié)課很多地方分析的非常清楚,比如在講解,關(guān)于直線對稱和點對稱時
求表達式,他這樣講解f(x)關(guān)于x=a對稱,為什么會f(x)=f(2a-x)
。1)兩點關(guān)于x軸對稱,縱坐標(函數(shù)值y)沒變,所以f()=f()(f()表示函數(shù)值)
。2)橫坐標原來為x,對稱后變了,由中點坐標公式得,x1=2a-x,所以f(x)=f(2a-x),講解關(guān)于點(a,0)對稱時求表達式,由于縱坐標變?yōu)樵瓉硐喾磾?shù),所以f()=一f(),同樣橫坐標也可以由中點公式得2a-x,所以f(x)=一f(2a-x),分析得很清楚。
(六)暴露學生思維
本節(jié)課應(yīng)該說學生的思維還是比較活躍的,在老師的幫助下,學生表現(xiàn)比較積極、投入,課堂氣氛活躍,學生能夠根據(jù)自己的理解提出方案,對于問題的解答反映還是比較快的,但是也不排除有個別學生可能由于問題的抽象性,對于問題的本質(zhì)缺乏充分的認識及自身理解水平的問題,對于問題的下一步是什么,如何思考沒有想法。
可改進建議:由于課堂容量較大,教師可能考慮到時間的問題,對于后幾個問題沒有讓學生有充分的時間思考,有些思維慢,或理解不夠的學生可能跟不上,在下面沒有反應(yīng),建議教師事先出張學案,將要研究的問題羅列出一張?zhí)峋V,讓學生在課前去思考,這樣上課的聽課效率可能會更好。
初中數(shù)學教案15
教學 建議
一、知識結(jié)構(gòu)
二、重點、難點分析
本節(jié) 教學 的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.
1.不等式的解與方程的解的意義的異同點
相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.
2.不等式的解與解集的區(qū)別與聯(lián)系
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.
3.不等式解集的表示方法
(1)用不等式表示
一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
。2)用數(shù)軸表示
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
一、素質(zhì) 教育 目標
。ㄒ唬┲R 教學 點
1.使學生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
。ǘ┠芰τ柧汓c
通過 教學 ,使學生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分數(shù)集用相應(yīng)的不等式表示.
。ㄈ┑掠凉B透點
通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.
。ㄋ模┟烙凉B透點
通過本節(jié)課的學習,讓學生了解不等式的解集可利用圖形來表達,滲透數(shù)形結(jié)合的數(shù)學美.
二、學法引導
1. 教學 方法:類比法、引導發(fā)現(xiàn)法、實踐法.
2.學生學法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
三、重點·難點·疑點及解決辦法
(一)重點
1.不等式解集的`概念.
2.利用數(shù)軸表示不等式的解集.
。ǘ╇y點
正確理解不等式解集的概念.
(三)疑點
弄不清不等式的解集與方程的解的區(qū)別、聯(lián)系.
。ㄋ模┙鉀Q辦法
弄清楚不等式的解與解集的概念.
四、課時安排
一課時.
五、教具學具準備
投影儀或電腦、自制膠片、直尺.
六、師生互動活動設(shè)計
。ㄒ唬┟鞔_目標
本節(jié)課重點學習不等式的解集,解不等式的概念并會用數(shù)軸表示不等式的解集.
。ǘ┱w感知
通過枚舉法來形象直觀地推出不等式的解集,再給出不等式解集的概念,從而更準確地讓學生掌握該概念.再通過師生的互動學習用數(shù)軸表示不等式的解集,從而為今后求不等式組的解集打下良好的基礎(chǔ).
。ㄈ 教學 過程
1.創(chuàng)設(shè)情境,復習引入
(1)根據(jù)不等式的基本性質(zhì),把下列不等式化成 或 的形式.
、 ②
。2)當 取下列數(shù)值時,不等式 是否成立?
l,0,2,-2.5,-4,3.5,4,4.5,3.
學生活動:獨立思考并說出答案:(1)① ② .(2)當 取1,0,2,-2.5,-4時,不等式 成立;當 取3.5,4,4.5,3時,不等式 不成立.
大家知道,當 取1,2,0,-2.5,-4時,不等式 成立.同方程類似,我們就說1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3這些使不等式 不成立的數(shù)就不是不等式 的解.
對于不等式 ,除了上述解外,還有沒有解?解的個數(shù)是多少?將它們在數(shù)軸上表示出來,觀察它們的分布有什么規(guī)律?
學生活動:思考討論,嘗試得出答案,指名板演如下:
【教法說明】啟發(fā)學生用試驗方法,結(jié)合數(shù)軸直觀研究,把已說出的不等式 的解2,0,1,-2.5,-4用“實心圓點”表示,把不是 的解的數(shù)值3.5,4,4.5,3用“空心圓圈”表示,好像是“挖去了”.
師生歸納:觀察數(shù)軸可知,用“實心圓點”表示的數(shù)都落在3的左側(cè),3和3右側(cè)的數(shù)都用空心圓圈表示,從而我們推斷,小于3的每一個數(shù)都是不等式 的解,而大于或等于3的任何一個數(shù)都不是 的解.可以看出,不等式 有無限多個解,這無限多個解既包括小于3的正整數(shù)、正小數(shù)、又包括0、負整數(shù)、負小數(shù);把不等式 的無限多個解集中起來,就得到 的解的集會,簡稱不等式 的解集.
2.探索新知,講授新課
(1)不等式的解集
一般地,一個含有未知數(shù)的不等式的所有的解,組成這個不等式的解的集合,簡稱這個不等式的解集.
、僖苑匠 為例,說出一元一次方程的解的情況.
、诓坏仁 的解的個數(shù)是多少?能一一說出嗎?
。2)解不等式
求不等式的解集的過程,叫做解不等式.
解方程 求出的是方程的解,而解不等式 求出的則是不等式的解集,為什么?
學生活動:觀察思考,指名回答.
教師 歸納:正是因為一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有無限多個,無法一一列舉出來,因而只能用不等式 或 揭示這些解的共同屬性,也就是求出不等式的解集.實際上,求某個不等式的解集就是運用不等式的基本性質(zhì),把原不等式變形為 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .
【教法說明】學生對一元一次方程的解印象較深,而不等式與方程的相同點較多,因而易將“不等式的解集”與“方程的解”混為一談,這里設(shè)置上述問題,目的是使學生弄清“不等式的解集”與“方程的解”的關(guān)系.
。3)在數(shù)軸上表示不等式的解集
①表示不等式 的解集:( )
分析:因為未知數(shù)的取值小于3,而數(shù)軸上小于3的數(shù)都在3的左邊,所以就用數(shù)軸上表示3的點的左邊部分來表示解集 .注意未知數(shù) 的取值不能為3,所以在數(shù)軸上表示3的點的位置上畫空心圓圈,表示不包括3這一點,表示如下:
、诒硎 的解集:( )
學生活動:獨立思考,指名板演并說出分析過程.
分析:因為未知數(shù)的取值可以為-2或大于-2的數(shù),而數(shù)軸上大于-2的數(shù)都在-2右邊,所以就用數(shù)鋼上表示-2的點和它的右邊部分來表示.如下圖所示:
注意問題:在數(shù)軸上表示-2的點的位置上,應(yīng)畫實心圓心,表示包括這一點.
【教法說明】利用數(shù)軸表示不等式解的解集,增強了解集的直觀性,使學生形象地看到不等式的解有無限多個,這是數(shù)形結(jié)合的具體體現(xiàn). 教學 時,要特別講清“實心圓點”與“空心圓圈”的不同用法,還要反復提醒學生弄清到底是“左邊部分”還是“右邊部分”,這也是學好本節(jié)內(nèi)容的關(guān)鍵.
3.嘗試反饋,鞏固知識
。1)不等式的解集 與 有什么不同?在數(shù)軸上表示它們時怎樣區(qū)別?分別在數(shù)軸上把這兩個解集表示出來.
。2)在數(shù)軸上表示下列不等式的解集.
① 、 、 、
(3)指出不等式 的解集,并在數(shù)軸上表示出來.
師生活動:首先學生在練習本上完成,然后 教師 抽查,最后與出示投影的正確答案進行對比.
【教法說明】 教學 時,應(yīng)強調(diào)2.(4)題的正確表示為:
我們已經(jīng)能夠在數(shù)軸上準確地表示出不等式的解集,反之若給出數(shù)軸上的某部分數(shù)集,還要會寫出與之對應(yīng)的不等式的解集來.
4.變式訓練,培養(yǎng)能力
。1)用不等式表示圖中所示的解集.
【教法說明】強調(diào)“· ”“ °”在使用、表示上的區(qū)別.
(2)單項選擇:
、俨坏仁 的解集是(。
A. B. C. D.
②不等式 的正整數(shù)解為(。
A.1,2 B.1,2,3 C.1 D.2
、塾貌坏仁奖硎緢D中的解集,正確的是(。
A. B. C. D.
、苡脭(shù)軸表示不等式的解集 正確的是(。
學生活動:分析思考,說出答案.( 教師 給予糾正或肯定)
【教法說明】此題以搶答形式茁現(xiàn),更能激發(fā)學生探索知識的熱情.
。ㄋ模┛偨Y(jié)、擴展
學生小結(jié), 教師 完善:
1.? 本節(jié)重點:
。1)了解不等式的解集的概念.
。2)會在數(shù)軸上表示不等式的解集.
2.注意事項:
弄清“ · ”還是“ °”,是“左邊部分”還是“右邊部分”.
七、布置作業(yè)
【初中數(shù)學教案】相關(guān)文章:
初中數(shù)學教案02-21
初中數(shù)學教案08-12
角初中數(shù)學教案12-30
初中數(shù)學教案模板11-02
人教版初中數(shù)學教案07-17
初中數(shù)學教案【推薦】11-22
【薦】初中數(shù)學教案11-26
初中數(shù)學教案【精】11-19
初中數(shù)學教案【熱】11-17