中文国产日韩欧美视频,午夜精品999,色综合天天综合网国产成人网,色综合视频一区二区观看,国产高清在线精品,伊人色播,色综合久久天天综合观看

上學期 1.7 四種命題

時間:2023-05-02 02:31:34 高中數(shù)學教案 我要投稿
  • 相關(guān)推薦

上學期 1.7 四種命題

教學目標 

(1)理解四種命題的概念;

(2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;

(3)理解一個命題的真假與其他三個命題真假間的關(guān)系;

(4)初步掌握反證法的概念及反證法證題的基本步驟;

(5)通過對四種命題之間關(guān)系的學習,培養(yǎng)學生邏輯推理能力;

(6)通過對四種命題的存在性和相對性的認識,進行辯證唯物主義觀點教育;

(7)培養(yǎng)學生用反證法簡單推理的技能,從而發(fā)展學生的思維能力.

教學重點和難點

重點:四種命題之間的關(guān)系;難點:反證法的運用.

教學過程 設(shè)計

第一課時:四種命題

一、導入  新課

【練習】 1.把下列命題改寫成“若 則 ”的形式:

(l)同位角相等,兩直線平行;

(2)正方形的四條邊相等.

2.什么叫互逆命題?上述命題的逆命題是什么?

將命題寫成“若 則 ”的形式,關(guān)鍵是找到命題的條件 與結(jié)論 .

如果第一個命題的條件是第二個命題的結(jié)論,且第一個命題的結(jié)論是第二個命題的條件,那么這兩個命題叫做互道命題.

上述命題的道命題是“若一個四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”.

值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當成原命題,去求它的逆命題.

   3.原命題真,逆命題一定真嗎?

“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

學生活動:

口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.

設(shè)計意圖:

通過復習舊知識,打下學習否命題、逆否命題的基礎(chǔ).

二、新課

【設(shè)問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?

【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個命題叫原命題的否命題.

【提問】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?

學生活動:

口答:若一個四邊形不是正方形,則它的四條邊不相等.

教師活動:

【講述】一個命題的條件和結(jié)論分別是另一個命題的條件的否定和結(jié)論的否定,這樣的兩個命題叫做互否命題.把其中一個命題叫做原命題,另一個命題叫做原命題的否命題.

若用 和 分別表示原命題的條件和結(jié)論,用┐ 和┐ 分別表示 和 的否定.

【板書】原命題:若 則 ;

否命題:若┐ 則┐ .

【提問】原命題真,否命題一定真嗎?舉例說明?

學生活動:

講論后回答:

原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真.

原命題“正方形的四條邊相等”真,它的否命題“若一個四邊形不是正方形,則它的四條邊不相等”不真.

由此可以得原命題真,它的否命題不一定真.

設(shè)計意圖:

通過設(shè)問和討論,讓學生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動學生學習的積極性.

教師活動:

【提問】命題“同位角相等,兩條直線平行”除了 能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?

學生活動:

討論后回答

 【總結(jié)】可以將這個命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個命題叫原命題的逆否命題.

教師活動:

【提問】原命題“正方形的四條邊相等”的逆否命題是什么?

學生活動:

口答:若一個四邊形的四條邊不相等,則不是正方形.

教師活動:

【講述】一個命題的條件和結(jié)論分別是另一個命題的結(jié)論的否定和條件的否定,這樣的兩個命題叫做互為逆否命題.把其中一個命題叫做原命題,另一個命題就叫做原命題的逆否命題.

原命題是“若 則 ”,則逆否命題為“若 則 .

【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

學生活動:

討論后回答

這兩個逆否命題都真.

原命題真,逆否命題也真.

教師活動:

【提問】原命題的真假與其他三種命題的真

假有什么關(guān)系?舉例加以說明?

【總結(jié)】1.原命題為真,它的逆命題不一定為真.

2.原命題為真,它的否命題不一定為真.

3.原命題為真,它的逆否命題一定為真.

設(shè)計意圖:

通過設(shè)問和討論,讓學生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動學生學的積極性.

教師活動:

三、課堂練習

1.設(shè)原命題是“若 ,則 ”,寫出它的逆命題、否命題與逆否命題,并分別判斷它們的真假.

學生活動:

筆答:

逆命題“若 ,則 ”.逆命題是假命題.

否命題“若 ,則 ”.否命題是假命題.

逆否命題“若 ,則 ”.逆否命題是真命題.

教師活動:

2.設(shè)原命題是“當 時,若 ,則 ”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.

學生活動:

筆答

逆命題“當 時,若 ,則 ”.

否命題“當 時,若 ,則 ”.否命題為真.

逆否命題“當 時,若 ,則 ”.逆否命題為真.

設(shè)計意圖:

通過練習鞏固由原命題構(gòu)成否命題、逆否命題及判斷它的真假的能力.

教師活動:

【總結(jié)】“當 時”是大前提,寫其他命題時應該將“當 時”寫在前面.原命題的條件是 ,結(jié)論是

“ ”的否定是“ ”,而不是“ ”,同樣“ ”的否定是“ ”,而不是“ ”.

【投影】

3.填圖

1.若原命題是“若 則 ”,其它三種命題的形式怎樣表示?請寫在方框內(nèi)?

學生活動:筆答

教師活動:

2.根據(jù)上圖所給出的箭頭,寫出箭頭兩頭命題之間的關(guān)系?舉例加以說明?

學生活動:討論后回答

設(shè)計意圖:

通過學生自己填圖,使學生掌握四種命題的形式和它們之間的關(guān)系.

教師活動:

四、小結(jié)

四種命題的形式和關(guān)系如下圖:

由原命題構(gòu)成道命題只要將 和 換位就可以.由原命題構(gòu)成否命題只要 和 分別否定為 和 ,但 和 不必換位.由原命題構(gòu)成逆否命題時不但要將 和 換位,而且要將換位后的 和 否定·

原命題為真,它的逆命題不一定為真.

原命題為真,它的否命題不一定為真.

原命題為真,它的逆否命題一定為真.

因為互為逆否命題同真同假,所以討論四種命題的真假性只討論原命題和逆否命題中的一個,逆命題和否命題中的一個,只討論兩種就可以了,不必對四種命題形式—一加以討論.

教師活動:

五、作業(yè) 

1.閱讀課本 四種命題.

2. 四種命題,練習(31頁)1、2,練習(32頁)1、2

3.習題 1、2、3、4

第二課時:反證法

一、導入  新課

【提問】初中我們學過反證法,你能回答出用反證法證明命題的一般步驟嗎?

學生活動:

口答:

(l)假設(shè)命題的結(jié)論不成立,即假設(shè)結(jié)論的反面成立;

(2)從這個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

(3)由矛盾判定假設(shè)不正確,從而肯定命題的結(jié)論正確.

設(shè)計意圖:

復習舊知識,為學習反證法鋪平道路.

教師活動:

【導入  】同學們對反證法這種間接證法不像學過的直接證法如綜合法、分析法那樣熟悉,感到抽象、難懂,讓我們舉出一例對反證法加以介紹.

我們年級有367名學生,請你證明這些學生中至少有兩個學生在同一天過生日.

這個問題若用直接證法來解決是有困難的,我們可以運用反證法.

運用反證法證明這個問題首先是根據(jù)“至少有兩個學生在同一天過生日”的反面是“任何兩個學生都不在同一天過生日”,也就是反設(shè)“假設(shè)任何兩個學生都不在同一天過生日”,從這個反設(shè)出發(fā)就會推出這367人就會有不同的367天過生日,這就出現(xiàn)了與一年只有365天(閏年366天)的矛盾.產(chǎn)生這個矛盾的來源是由于開始的反設(shè),因此反設(shè)不成立,這樣得出了“至少有兩個學生在同一天過生日”的結(jié)論.

設(shè)計意圖:

以生活中的實際例子拉近學生與反證法的距離,激發(fā)學生的學習興趣.

【板書】反證法證題的步驟:

1.反設(shè); 2.歸謬; 3.結(jié)論

【例】用反證法證明:圓的兩條不是直徑的相交弦不能互相平分.

已知:如圖,在⊙O中,弦 AB、CD相交于 P點,且 AB、CD不是直徑.

求證:弦AB、CD不被P點平分.

【設(shè)問】用反證法證明這道題如何進行反設(shè)?怎樣進行歸謬?

【引導討論】“弦AB、CD不被P點平分”的反面是“弦AB、CD被P點平分”,因而反設(shè)是“假設(shè)弦AB、CD被P點平分”.

學生活動:

思考后分組討論,互相補充.

設(shè)計意圖:

在關(guān)鍵處設(shè)問,激勵學生探究精神,提高運用反證法的能力.

教師活動:

由于P點不是圓心O,連結(jié)OP,由垂徑定理的推論得 , ,這樣過P點有兩條直線與OP都垂直,與垂線的性質(zhì)矛盾.

結(jié)論是“弦AB、CD不被P點平分”成立.

這道題用反證法證明還有一個方法.

連結(jié) AD、BD、BC、AC·

【提問】用反證法證明怎樣反設(shè)?怎樣歸謬?

反設(shè)仍是“弦AB、CD能被P點平分”.

學生活動:

討論后回答

因為 ,所以四邊形ABCD是平行四邊形,而圓內(nèi)接平行四邊形必是矩形,則其對角線AB、CD必是圓O的直徑,這與假設(shè)矛盾,所以結(jié)論“弦AB、CD不被P點平分”成立·

設(shè)計意圖:

讓學生進一步體會在反證法中如何進行反充、歸謬.

教師活動:

【練習】用反證法證明 不是有理數(shù)

證明:假設(shè) 是有理數(shù),則 可表示為 ( , 為自然數(shù),且互質(zhì))

兩邊平方,得

  ①

由①知 必是2的倍數(shù),進而 必是2的倍數(shù).

令 代入①式,得

   ②

由②知, 必是2的倍數(shù), 和 都是2的倍數(shù),則 、 不互質(zhì),與假定 、 互質(zhì)相矛盾, 不是有理數(shù).

設(shè)計意圖:

鞏固練習.

教師活動:

【例】用反證法證明:如果 ,那么 .

【剖析】運用反證法證明這道題時,怎樣進行反設(shè)? 的反面是否僅有 ?

證明:假設(shè) 不小于 ,則或者 ,或者

當 ,因為 ,所以

在 的兩邊都乘以 得

,

在 的兩邊都乘以 得

,

所以                                  

這與假設(shè) 矛盾,所以 不成立.

當 時可得到 ,這與假設(shè) 矛盾.

綜上所述,所以

設(shè)計意圖:

通過對例題的剖析,使學生掌握如何在反證法中反設(shè)和歸謬.

教師活動:

三、課堂練習

用反證法證明:

已知:銳角三角形ABC中

求證:

證明:假設(shè) ,則

因為 ,所以 , .這樣可推出 是鈍角三角形或直角三角形,這與假設(shè) 是銳角三角形矛盾.所以

設(shè)計意圖:

進一步提高運用反證法證題的能力.

四、小結(jié)

反證法證題的步驟:

(1)反設(shè);(2)歸謬;(3)結(jié)論.

運用反證法在歸謬中所導出的矛盾可以是與已知條件的矛盾,也可以是與某個公理、定理的矛盾,也可以是證明過程中自相矛盾.

五、作業(yè) 

1.閱讀課本 四種命題中“反證法”部分

2. 四種命題中“反證法”練習1、2.

3.習題 5、6

4.用反證法證明:在 中,AB、BC、AC不全相等,那么 、 、 中至少有一個大于

證明:假設(shè) 、 、 都大于 ,即 , ,

因為AB、BC、AC不全相等,所以上面三式中不能同時取等號,這樣有 .與定理“三角形內(nèi)角和為 ”矛盾,因此結(jié)論 、 、 中至少有一個大于 成立.

上學期 1.7 四種命題

【上學期 1.7 四種命題】相關(guān)文章:

四種命題邏輯中公式的相對Γ-重言度理論04-29

四種n值邏輯系統(tǒng)中命題的概率真度與相似度04-27

09.9.14命題作文--新學期04-25

不真命題與不假命題05-02

命題04-29

命題作文:新學期之煩惱04-25

命題教案04-25

考研政治命題規(guī)律及命題趨勢分析04-28

了解命題變化規(guī)律,把握作文命題方向04-30

四種職場酷刑03-13