數(shù)學(xué)高中必修三知識點(diǎn)及教案總結(jié)
在教學(xué)工作者實(shí)際的教學(xué)活動中,很有必要精心設(shè)計一份教案,教案是保證教學(xué)取得成功、提高教學(xué)質(zhì)量的基本條件。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編收集整理的數(shù)學(xué)高中必修三知識點(diǎn)及教案總結(jié),希望對大家有所幫助。
數(shù)學(xué)高中必修三知識點(diǎn)及教案總結(jié) 篇1
一:算法初步
1:算法的概念
。1)算法概念:在數(shù)學(xué)上,現(xiàn)代意義上的“算法”通常是指可以用計算機(jī)來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.
。2)算法的特點(diǎn):
、儆邢扌裕阂粋算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
、诖_定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
③順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進(jìn)行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.
、懿晃ㄒ恍裕呵蠼饽骋粋問題的解法不一定是唯一的,對于一個問題可以有不同的算法.
、萜毡樾裕汉芏嗑唧w的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.
2:程序框圖
(1)程序框圖基本概念:
、俪绦驑(gòu)圖的概念:程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形。
一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明。
、跇(gòu)成程序框的圖形符號及其作用
學(xué)習(xí)這部分知識的時候,要掌握各個圖形的形狀、作用及使用規(guī)則,畫程序框圖的規(guī)則如下:
1、使用標(biāo)準(zhǔn)的圖形符號。
2、框圖一般按從上到下、從左到右的方向畫。
3、除判斷框外,大多數(shù)流程圖符號只有一個進(jìn)入點(diǎn)和一個退出點(diǎn)。判斷框具有超過一個退出點(diǎn)的唯一符號。
4、判斷框分兩大類,一類判斷框“是”與“否”兩分支的判斷,而且有且僅有兩個結(jié)果;另一類是多分支判斷,有幾種不同的結(jié)果。
5、在圖形符號內(nèi)描述的語言要非常簡練清楚。
3:算法的三種基本邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu)。
。1)順序結(jié)構(gòu):順序結(jié)構(gòu)是最簡單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進(jìn)行的,它是由若干個依次執(zhí)行的處理步驟組成的,它是任何一個算法都離不開的一種基本算法結(jié)構(gòu)。示意圖中,A框和B框是依次執(zhí)行的,只有在執(zhí)行完A框指定的操作后,才能接著執(zhí)行B框所指定的操作。
。2)條件結(jié)構(gòu):條件結(jié)構(gòu)是指在算法中通過對條件的判斷根據(jù)條件是否成立而選擇不同流向的算法結(jié)構(gòu)。條件P是否成立而選擇執(zhí)行A框或B框。無論P(yáng)條件是否成立,只能執(zhí)行A框或B框之一,不可能同時執(zhí)行A框和B框,也不可能A框、B框都不執(zhí)行。一個判斷結(jié)構(gòu)可以有多個判斷框。
。3)循環(huán)結(jié)構(gòu):在一些算法中,經(jīng)常會出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:
、僖活愂钱(dāng)型循環(huán)結(jié)構(gòu),如下左圖所示,它的功能是當(dāng)給定的條件P成立時,執(zhí)行A框,A框執(zhí)行完畢后,再判斷條件P是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行A框,直到某一次條件P不成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
②另一類是直到型循環(huán)結(jié)構(gòu),如下右圖所示,它的功能是先執(zhí)行,然后判斷給定的條件P是否成立,如果P仍然P成立為止,此時不再執(zhí)行A框,離開循環(huán)結(jié)構(gòu)。
當(dāng)結(jié)注意:1循環(huán)結(jié)構(gòu)要在某個條件下終止循環(huán),這就需要條件結(jié)構(gòu)來判斷。因此,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu),但不允許“死循環(huán)”。2在循環(huán)結(jié)構(gòu)中都有一個計數(shù)變量和累加變量。計數(shù)變量用于記錄循環(huán)次數(shù),累加變量用于輸出結(jié)果。計數(shù)變量和累加變量一般是同步執(zhí)行的,累加一次,計數(shù)一次。
4:輸入、輸出語句和賦值語句
(1)輸入語句①輸入語句的一般格式
、谳斎胝Z句的作用是實(shí)現(xiàn)算法的輸入信息功能;③“提示內(nèi)容”提示用戶輸入什么樣的信息,變量是指程序在運(yùn)行時其值是可以變化的量;④輸入語句要求輸入的值只能是具體的常數(shù),不能是函數(shù)、變量或表達(dá)式;⑤提示內(nèi)容與變量之間用分號“;”隔開,若輸入多個變量,變量與變量之間用逗號“,”隔開。
。2)輸出語句①輸出語句的一般格式
②輸出語句的作用是實(shí)現(xiàn)算法的輸出結(jié)果功能;③“提示內(nèi)容”提示用戶輸入什么樣的信息,表達(dá)式是指程序要輸出的數(shù)據(jù);④輸出語句可以輸出常量、變量或表達(dá)式的值以及字符。
。3)賦值語句①賦值語句的一般格式
、谫x值語句的作用是將表達(dá)式所代表的值賦給變量;③賦值語句中的“=”稱作賦值號,與數(shù)學(xué)中的等號的意義是不同的。賦值號的左右兩邊不能對換,它將賦值號右邊的表達(dá)式的值賦給賦值號左邊的變量;④賦值語句左邊只能是變量名字,而不是表達(dá)式,右邊表達(dá)式可以是一個數(shù)據(jù)、常量或算式;⑤對于一個變量可以多次賦值。
注意:①賦值號左邊只能是變量名字,而不能是表達(dá)式。如:2=X是錯誤的。②賦值號左右不能對換。如“A=B”“B=A”的含義運(yùn)行結(jié)果是不同的。③不能利用賦值語句進(jìn)行代數(shù)式的演算。(如化簡、因式分解、解方程等)④賦值號“=”與數(shù)學(xué)中的等號意義不同。
5:條件語句
。1)條件語句的一般格式有兩種:①IF—THEN—ELSE語句;②IF—THEN語句。
、買F—THEN—ELSE語句IF—THEN—ELSE語句的一般格式為圖1,對應(yīng)的程序框圖為圖2。
圖2
分析:在IF—THEN—ELSE語句中,“條件”表示判斷的條件,“語句1”表示滿足條件時執(zhí)行的操作內(nèi)容;“語句2”表示不滿足條件時執(zhí)行的操作內(nèi)容;ENDIF表示條件語句的結(jié)束。計算機(jī)在執(zhí)行時,
首先對IF后的條件進(jìn)行判斷,如果條件符合,則執(zhí)行THEN后面的語句1;若條件不符合,則執(zhí)行ELSE后面的語句2。②IF—THEN語句
IF—THEN語句的一般格式為圖3
注意:“條件”表示判斷的條件;
“語句”表示滿足條件不滿足時,結(jié)束程序;ENDIF表示條件語句的結(jié)束。計算機(jī)在執(zhí)行時首先對IF后的條件進(jìn)行判斷,如果條件符合就執(zhí)行THEN后邊的語句,若條件不符合則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其它語句。
6:循環(huán)語句
循環(huán)結(jié)構(gòu)是由循環(huán)語句來實(shí)現(xiàn)的。對應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計語言中也有當(dāng)型(WHILE型)和直到型(UNTIL型)兩種語句結(jié)構(gòu)。即WHILE語句和UNTIL語句。
。1)WHILE語句
、賅HILE語句的一般格式是
②當(dāng)計算機(jī)遇到WHILE語句時,先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與WEND之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個過程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時,計算機(jī)將不執(zhí)行循環(huán)體,直接跳到WEND語句后,接著執(zhí)行WEND之后的語句。因此,當(dāng)型循環(huán)有時也稱為“前測試型”循環(huán)。
(2)UNTIL語句
、賃NTIL語句的一般格式是對應(yīng)的程序框圖是
、谥钡叫脱h(huán)又稱為“后測試型”循環(huán),從UNTIL型循環(huán)結(jié)構(gòu)分析,計算機(jī)執(zhí)行該語句時,先執(zhí)行一次循環(huán)體,然后進(jìn)行條件的判斷,如果條件不滿足,繼續(xù)返回執(zhí)行循環(huán)體,然后再進(jìn)行條件的判斷,這個過程反復(fù)進(jìn)行,直到某一次條件滿足時,不再執(zhí)行循環(huán)體,跳到LOOPUNTIL語句后執(zhí)行其他語句,是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語句。
分析:當(dāng)型循環(huán)與直到型循環(huán)的區(qū)別:(先由學(xué)生討論再歸納)
。1)當(dāng)型循環(huán)先判斷后執(zhí)行,直到型循環(huán)先執(zhí)行后判斷;
在WHILE語句中,是當(dāng)條件滿足時執(zhí)行循環(huán)體,在UNTIL語句中,是當(dāng)條件不滿足時執(zhí)行循環(huán)
7:輾轉(zhuǎn)相除法與更相減損術(shù)
。1)輾轉(zhuǎn)相除法。也叫歐幾里德算法,用輾轉(zhuǎn)相除法求最大公約數(shù)的步驟如下:
、儆幂^大的數(shù)m除以較小的數(shù)n得到一個商公約數(shù);若R0S0和一個余數(shù)S1R0;②若R1R0=0,則n為m,n的最大R1≠0,則用除數(shù)n除以余數(shù)≠0,則用除數(shù)R0R0得到一個商和一個余數(shù);③若=0,則R1為m,n的最大公約數(shù);若R1除以余數(shù)R1得到一個商S2和一個余數(shù)R2;??依次計算直至Rn=0,此時所得到的Rn?1即為所求的最大公約數(shù)。
(2)更相減損術(shù)
我國早期也有求最大公約數(shù)問題的算法,就是更相減損術(shù)。在《九章算術(shù)》中有更相減損術(shù)求最大公約數(shù)的步驟:可半者半之,不可半者,副置分母?子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之。翻譯為:①任意給出兩個正數(shù);判斷它們是否都是偶數(shù)。若是,用2約簡;若不是,執(zhí)行第二步。②以較大的數(shù)減去較小的數(shù),接著把較小的數(shù)與所得的差比較,并以大數(shù)減小數(shù)。繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)(等數(shù))就是所求的最大公約數(shù)。
。3)輾轉(zhuǎn)相除法與更相減損術(shù)的區(qū)別:
、俣际乔笞畲蠊s數(shù)的方法,計算上輾轉(zhuǎn)相除法以除法為主,更相減損術(shù)以減法為主,計算次數(shù)上輾轉(zhuǎn)相除法計算次數(shù)相對較少,特別當(dāng)兩個數(shù)字大小區(qū)別較大時計算次數(shù)的區(qū)別較明顯。
②從結(jié)果體現(xiàn)形式來看,輾轉(zhuǎn)相除法體現(xiàn)結(jié)果是以相除余數(shù)為0則得到,而更相減損術(shù)則以減數(shù)與差相
等而得到8:秦九韶算法與排序
。1)秦九韶算法概念:
f(x)=anxn+an-1xn-1+….+a1x+a0求值問題
f(x)=anxn+an-1xn-1+….+a1x+a0=(anxn-1+an-1xn-2+….+a1)x+a0=((anxn-2+an-1xn-3+….+a2)x+a1)x+a0=......=(...(anx+an-1)x+an-2)x+...+a1)x+a0
求多項式的值時,首先計算最內(nèi)層括號內(nèi)依次多項式的值,即v1=anx+an-1然后由內(nèi)向外逐層計算一次多項式的值,即v2=v1x+an-2v3=v2x+an-3......vn=vn-1x+a0這樣,把n次多項式的求值問題轉(zhuǎn)化成求n個一次多項式的'值的問題。
。2)兩種排序方法:直接插入排序和冒泡排序
、僦苯硬迦肱判
基本思想:插入排序的思想就是讀一個,排一個。將第1個數(shù)放入數(shù)組的第1個元素中,以后讀入的數(shù)與已存入數(shù)組的數(shù)進(jìn)行比較,確定它在從大到小的排列中應(yīng)處的位置.將該位置以及以后的元素向后推
數(shù)學(xué)高中必修三知識點(diǎn)及教案總結(jié) 篇2
一.隨機(jī)事件的概率及概率的意義
1、基本概念:
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機(jī)事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);對于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個事件的概率
二.概率的基本性質(zhì)
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對立事件;
(4)當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以
P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質(zhì):
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當(dāng)事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會同時發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;
(2)事件A不發(fā)生且事件B發(fā)生;
(3)事件A與事件B同時不發(fā)生,而對立事件是指事件A與事件B有且僅有一個發(fā)生,其包括兩種情形;
(1)事件A發(fā)生B不發(fā)生;
(2)事件B發(fā)生事件A不發(fā)生,對立事件互斥事件的特殊情形。
【數(shù)學(xué)高中必修三知識點(diǎn)及教案總結(jié)】相關(guān)文章:
高中數(shù)學(xué)必修教案11-16
高中人教版生物必修三知識點(diǎn)總結(jié)02-09
高中數(shù)學(xué)必修4教案學(xué)案11-16
高中地理必修三說課教案09-09
《對數(shù)與對數(shù)的運(yùn)算》高中數(shù)學(xué)必修一教案09-17
湘教版高中地理必修二教案08-01
高中數(shù)學(xué)教案模板、教案格式及教案范文08-25
高中生物必修一教案11-12