- 相關推薦
高中數學正弦定理的教案設計
一、教材分析
“解三角形”既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發(fā)現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數學問題”的建模過程中,體驗 “觀察——猜想——證明——應用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養(yǎng)學生對數學的學習興趣和“用數學”的意識。
二、學情分析
我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對“一些重要的數學思想和數學方法”的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節(jié)課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。
三、教學目標
1、知識和技能:在創(chuàng)設的問題情境中,引導學生發(fā)現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。
過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發(fā)學生對現實世界的一些數學模型進行思考。
情感、態(tài)度、價值觀:培養(yǎng)學生合情合理探索數學規(guī)律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立“數學與我有關,數學是有用的,我要用數學,我能用數學”的理念。
2、教學重點、難點
教學重點:正弦定理的發(fā)現與證明;正弦定理的簡單應用。
教學難點:正弦定理證明及應用。
四、教學方法與手段
為了更好的達成上面的教學目標,促進學習方式的轉變,本節(jié)課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。
五、教學過程
為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:
(一)創(chuàng)設情景,揭示課題
問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?
1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?
問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)
[設計說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學生學習本章知識的興趣。
(二)特殊入手,發(fā)現規(guī)律
問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?
引導啟發(fā)學生發(fā)現特殊情形下的正弦定理。
(三)類比歸納,嚴格證明
問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?
[設計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。
【高中數學正弦定理的教案設計】相關文章:
高中數學《正弦定理》教案07-19
高中數學正弦定理教案11-24
正弦定理的證明04-29
正弦定理證明04-29
高中數學正弦定理教案(6篇)11-26
高中數學正弦定理教案6篇11-25
高中數學《正弦定理》教案4篇01-07
正弦定理證明方法04-29
數學正弦定理教案02-12
正弦定理教學反思05-02