高中數學教案【優(yōu)選15篇】
作為一名人民教師,很有必要精心設計一份教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當的教學方法。我們該怎么去寫教案呢?以下是小編為大家整理的高中數學教案,僅供參考,希望能夠幫助到大家。
高中數學教案1
教學目標
(1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程。
(2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程。
。3)掌握直線方程各種形式之間的互化。
。4)通過直線方程一般式的教學培養(yǎng)學生全面、系統(tǒng)、周密地分析、討論問題的能力。
(5)通過直線方程特殊式與一般式轉化的教學,培養(yǎng)學生靈活的思維品質和辯證唯物主義觀點。
。6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法。
教學建議
1、教材分析
。1)知識結構
由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式。
。2)重點、難點分析
、俦竟(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程。
解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線。本節(jié)內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用。
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭。學生對點斜式學習的效果將直接影響后繼知識的學習。
、诒竟(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明。
2、教法建議
。1)教材中求直線方程采取先特殊后一般的'思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯。教學中各部分知識之間過渡要自然流暢,不生硬。
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續(xù)學習“曲線方程”打下基礎。
直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證。教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養(yǎng)學生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學生邏輯思維能力,同時培養(yǎng)學生辯證唯物主義觀點
。3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解。
。4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件。兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率。因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要。教學中應突出點斜式、兩點式和一般式三個教學高潮。
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程。根據兩個條件運用待定系數法和方程思想求直線方程。
。5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數)。
。6)本節(jié)中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養(yǎng)學生的綜合能力。
。7)直線方程的理論在其他學科和生產生活實際中有大量的應用。教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力。
(8)本節(jié)不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上。
教學設計示例
直線方程的一般形式
教學目標:
。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化。
。2)理解直線與二元一次方程的關系及其證明
。3)培養(yǎng)學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統(tǒng)一的觀點。
教學重點、難點:直線方程的一般式。直線與二元一次方程(不同時為0)的對應關系及其證明。
教學用具:計算機
教學方法:啟發(fā)引導法,討論法
教學過程:
下面給出教學實施過程設計的簡要思路:
教學設計思路:
(一)引入的設計
前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:
問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因為未知數有兩個,它們的次數為一次。
肯定學生回答,并糾正學生中不規(guī)范的表述。再看一個問題:
問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的次數為一次。
肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的次數為一次”。
啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論。
學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
。ǘ┍竟(jié)主體內容教學的設計
這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路。
學生或獨立研究,或合作研究,教師巡視指導。
經過一定時間的研究,教師組織開展集體討論。首先讓學生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。
當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。
當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式沒有任何區(qū)別,根據直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
綜合兩種情況,我們得出如下結論:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于直線的二元一次方程。
至此,我們的問題1就解決了。簡單點說就是:直線方程都是二元一次方程。而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”。
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統(tǒng)一的形式。
這樣上邊的結論可以表述如下:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程。
啟發(fā):任何一條直線都有這種形式的方程。你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面。這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論。那么如何研究呢?
師生共同討論,評價不同思路,達成共識:
回顧上邊解決問題的思路,發(fā)現原路返回就是非常好的思路,即方程(其中、不同時為0)系數是否為0恰好對應斜率是否存在,即
(1)當時,方程可化為
這是表示斜率為、在軸上的截距為的直線。
。2)當時,由于、不同時為0,必有,方程可化為
這表示一條與軸垂直的直線。
因此,得到結論:
在平面直角坐標系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線。
為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的。
【動畫演示】
演示“直線各參數。gsp”文件,體會任何二元一次方程都表示一條直線。
至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系。
。ㄈ┚毩曥柟、總結提高、板書和作業(yè)等環(huán)節(jié)的設計在此從略
高中數學教案2
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
二、目標分析:
教學重點。難點
重點:集合的含義與表示方法。
難點:表示法的恰當選擇。
教學目標
1.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數集及其專用記號;
(3)了解集合中元素的確定性;ギ愋。無序性;
(4)會用集合語言表示有關數學對象;
2.過程與方法
(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。
(2)讓學生歸納整理本節(jié)所學知識。
3.情感。態(tài)度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性。
三、教法分析
1.教學方法:學生通過閱讀教材,自主學習、思考、交流、討論和概括,從而更好地完成本節(jié)課的教學目標。
2.教學手段:在教學中使用投影儀來輔助教學。
四。過程分析
(一)創(chuàng)設情景,揭示課題
1.教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學校、現在的班級。
(2)問題:像“家庭”、“學!薄ⅰ鞍嗉墶钡,有什么共同特征?
引導學生互相交流。與此同時,教師對學生的活動給予評價。
2.活動:
(1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節(jié)要學的內容。
設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構概念
1.教師利用多媒體設備向學生投影出下面7個實例:
(1)1—20以內的所有質數;
(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國;
(4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學20xx年9月入學的高一學生的全體。
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義。一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素。
4.教師指出:集合常用大寫字母A,B,C,D表示,元素常用小寫字母a,b,c,d表示。
設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神
(三)質疑答辯,發(fā)展思維
1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難。使學生明確集合元素的三大特性,即:確定性、互異性和無序性。只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等。
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數;
(2)我國的小河流。讓學生充分發(fā)表自己的建解。
3.讓學生自己舉出一些能夠構成集合的`例子以及不能構成集合的例子,并說明理由。教師對學生的學習活動給予及時的評價。
4.教師提出問題,讓學生思考
b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,高一(4)班的一位同學,那么a,b與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于。
如果a是集合A的元素,就說a屬于集合A
如果a不是集合A的元素,就說a不屬于集合A
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國。日本與集合A的關系分別是什么?請用數學符號分別表示。
(3)讓學生完成教材第6頁練習第1題。
5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號。并讓學生完成習題1.1A組第1題。
6.教師引導學生閱讀教材中的相關內容,并思考。討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言。列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據問題選擇適當的集合表示法?
使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習
(1)用自然語言描述集合{1,3,5,7,9};
(2)用例舉法表示集合A
(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題。
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業(yè)
1.小結:在師生互動中,讓學生了解或體會下例問題:
本節(jié)課我們學習了哪些知識內容?
2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書面作業(yè):第13頁習題1.1A組第4題
2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種呢?如何表示?請同學們通過預習教材。
高中數學教案3
課程概述:
本課程為高中數學網課教學,針對的學生群體為高一學生,總共有40節(jié)課。課程主要內容包括:集合、函數、三角函數、數列、立體幾何、概率論等。
教學歷程:
在教學歷程中,我們采用在線直播教學的方式,每節(jié)課的時長為1小時。每周安排4節(jié)課,共進行2個月。每節(jié)課開始前,我們會提前通知學生上課的時間和地點,以確保學生能夠準時參加。
教學內容和教學方法:
在教學內容方面,我們按照高中數學的教學大綱進行安排,包括基礎概念、公式和解題方法等。教學方法上,我們采用多種形式的教學方式,包括在線直播講解、PPT演示、習題講解等。為了提高學生的學習興趣,我們還會引入一些生活中的'例子進行講解。
教學效果:
通過本課程的學習,學生們的數學成績有了明顯的提高。其中,80%的學生掌握了課程中的所有內容,15%的學生掌握了一些難度較高的內容。在課后作業(yè)的完成情況方面,85%的學生能夠獨立完成作業(yè),15%的學生需要在老師的指導下完成作業(yè)。此外,學生們還學會了如何應用數學知識解決生活中的問題。
反思和建議:
在課程結束后,我們對本次教學進行了反思,發(fā)現在教學的過程中需要進一步加強習題的講解,以幫助學生更好地掌握數學知識和解題方法。同時,我們建議教師在教學過程中注重學生的個體差異,針對不同的學生采用不同的教學方法和策略。
高中數學教案4
一、教學內容分析
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象,恰當地利用定義解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發(fā)現問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現、獲取新知,提高教學效率。
四、教學目標
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3、借助多媒體輔助教學,激發(fā)學習數學的興趣。
五、教學重點與難點:
教學重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義解題
六、教學過程設計
【設計思路】
(一)開門見山,提出問題
一上課,我就直截了當地給出例題1:
(1)已知A(-2,0),B(2,0)動點M滿足|MA|+|MB|=2,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知動點M(x,y)滿足(x1)2(y2)2|3x4y|,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節(jié)課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學情預設】
估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25
這樣,很快就能得出正確結果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。
在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。
(二)理解定義、解決問題
例2:
(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2),求|PA|
【設計意圖】
運用圓錐曲線定義中的數量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的`設置就是為了方便學生的辨析。
【學情預設】
根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯系起來,這樣就容易和第二定義聯系起來,從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會。
練習:
設點Q是圓C:(x1)2225|AB|的最小值。3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。
引申:若將點A移到圓C外,點M的軌跡會是什么?
【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導學生對自己的結論進行驗證。
【知識鏈接】
(一)圓錐曲線的定義
1、圓錐曲線的第一定義
2、圓錐曲線的統(tǒng)一定義
(二)圓錐曲線定義的應用舉例
1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。
2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點,F1、F2為兩焦點,O為雙曲線的中心,求的|PO|取值范圍。
3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。
4、例題:
(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求|MA|+|MF|的最小值。
(2)已知A(,3)為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當|AM||MF|最小時,求M點的坐標。
(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使|PM|+|FM|最小。
5、已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求|MA|+|MB|的最小值與最大值。
七、教學反思
1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節(jié)省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發(fā)揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優(yōu)勢。
2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養(yǎng)學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。
總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節(jié)奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質教育,培養(yǎng)學生的創(chuàng)新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。
高中數學教案5
。ㄒ唬┙虒W具準備
直尺,投影儀.
。ǘ┙虒W目標
1.掌握,的定義域、值域、最值、單調區(qū)間.
2.會求含有、的三角式的定義域.
。ㄈ┙虒W過程
1.設置情境
研究函數就是要討論一些性質,,是函數,我們當然也要探討它的一些屬性.本節(jié)課,我們就來研究正弦函數、余弦函數的最基本的兩條性質.
2.探索研究
師:同學們回想一下,研究一個函數常要研究它的哪些性質?
生:定義域、值域,單調性、奇偶性、等等.
師:很好,今天我們就來探索,兩條最基本的性質定義域、值域.(板書課題正、余弦函數的定義域、值域.)
師:請同學看投影,大家仔細觀察一下正弦、余弦曲線的圖像.
師:請同學思考以下幾個問題:
。1)正弦、余弦函數的定義域是什么?
。2)正弦、余弦函數的值域是什么?
(3)他們最值情況如何?
(4)他們的正負值區(qū)間如何分?
。5)的解集如何?
師生一起歸納得出:
(1)正弦函數、余弦函數的定義域都是.
。2)正弦函數、余弦函數的值域都是即,,稱為正弦函數、余弦函數的有界性.
(3)取最大值、最小值情況:
正弦函數,當時,()函數值取最大值1,當時,()函數值取最小值-1.
余弦函數,當,()時,函數值取最大值1,當,()時,函數值取最小值-1.
。4)正負值區(qū)間:
()
。5)零點:()
。ǎ
3.例題分析
【例1】求下列函數的定義域、值域:
。1);(2);(3).
解:(1),
。2)由()
又∵,∴
∴定義域為(),值域為.
(3)由(),又由
∴
∴定義域為(),值域為.
指出:求值域應注意用到或有界性的條件.
【例2】求下列函數的最大值,并求出最大值時的集合:
。1),;(2),;
。3)(4).
解:(1)當,即()時,取得最大值
∴函數的最大值為2,取最大值時的集合為.
。2)當時,即()時,取得最大值.
∴函數的最大值為1,取最大值時的集合為.
(3)若,,此時函數為常數函數.
若時,∴時,即()時,函數取最大值,
∴時函數的最大值為,取最大值時的集合為.
。4)若,則當時,函數取得最大值.
若,則,此時函數為常數函數.
若,當時,函數取得最大值.
∴當時,函數取得最大值,取得最大值時的集合為;當時,函數取得最大值,取得最大值時的集合為,當時,函數無最大值.
指出:對于含參數的最大值或最小值問題,要對或的`系數進行討論.
思考:此例若改為求最小值,結果如何?
【例3】要使下列各式有意義應滿足什么條件?
。1);(2).
解:(1)由,
∴當時,式子有意義.
(2)由,即
∴當時,式子有意義.
4.演練反饋(投影)
。1)函數,的簡圖是()
。2)函數的最大值和最小值分別為()
A.2,-2 B.4,0 C.2,0 D.4,-4
。3)函數的最小值是()
A.B.-2 C.D.
。4)如果與同時有意義,則的取值范圍應為()
A.B.C.D.或
。5)與都是增函數的區(qū)間是()
A.,B.,
C.,D.,
。6)函數的定義域________,值域________,時的集合為_________.
參考答案:1.B 2.B 3.A 4.C 5.D
6.;;
5.總結提煉
。1),的定義域均為.
。2)、的值域都是
。3)有界性:
。4)最大值或最小值都存在,且取得極值的集合為無限集.
。5)正負敬意及零點,從圖上一目了然.
。6)單調區(qū)間也可以從圖上看出.
。ㄋ模┌鍟O計
1.定義域
2.值域
3.最值
4.正負區(qū)間
5.零點
例1
例2
例3
課堂練習
課后思考題:求函數的最大值和最小值及取最值時的集合
提示:
高中數學教案6
教學目標:
(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題。
。2)進一步理解曲線的方程和方程的曲線。
。3)初步掌握求曲線方程的方法。
。4)通過本節(jié)內容的教學,培養(yǎng)學生分析問題和轉化的能力。
教學重點、難點:
求曲線的方程。
教學用具:
計算機。
教學方法:
啟發(fā)引導法,討論法。
教學過程:
【引入】
1、提問:什么是曲線的方程和方程的曲線。
學生思考并回答。教師強調。
2、坐標法和解析幾何的意義、基本問題。
對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何。解析幾何的兩大基本問題就是:
。1)根據已知條件,求出表示平面曲線的方程。
。2)通過方程,研究平面曲線的性質。
事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。
【問題】
如何根據已知條件,求出曲線的方程。
【實例分析】
例1:設、兩點的坐標是、(3,7),求線段的垂直平分線的方程。
首先由學生分析:根據直線方程的知識,運用點斜式即可解決。
解法一:易求線段的中點坐標為(1,3),
由斜率關系可求得l的斜率為
于是有
即l的方程為
、
分析、引導:上述問題是我們早就學過的,用點斜式就可解決?墒,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據是什么,有證明嗎?
(通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據就是定義中的兩條)。
證明:(1)曲線上的'點的坐標都是這個方程的解。
設是線段的垂直平分線上任意一點,則
即
將上式兩邊平方,整理得
這說明點的坐標是方程的解。
(2)以這個方程的解為坐標的點都是曲線上的點。
設點的坐標是方程①的任意一解,則
到、的距離分別為
所以,即點在直線上。
綜合(1)、(2),①是所求直線的方程。
至此,證明完畢;仡櫳鲜鰞热菸覀儠l(fā)現一個有趣的現象:在證明(1)曲線上的點的坐標都是這個方程的解中,設是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標,這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:
解法二:設是線段的垂直平分線上任意一點,也就是點屬于集合
由兩點間的距離公式,點所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當然也不要忘了證明,即驗證兩條是否都滿足。顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現了曲線方程定義中點集與對應的思想。因此是個好方法。
讓我們用這個方法試解如下問題:
例2:點與兩條互相垂直的直線的距離的積是常數求點的軌跡方程。
分析:這是一個純粹的幾何問題,連坐標系都沒有。所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系。然后仿照例1中的解法進行求解。
求解過程略。
【概括總結】通過學生討論,師生共同總結:
分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:
首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正。說得更準確一點就是:
。1)建立適當的坐標系,用有序實數對例如表示曲線上任意一點的坐標;
。2)寫出適合條件的點的集合
;
(3)用坐標表示條件,列出方程;
。4)化方程為最簡形式;
(5)證明以化簡后的方程的解為坐標的點都是曲線上的點。
一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點。所以,通常情況下證明可省略,不過特殊情況要說明。
上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正。
下面再看一個問題:
例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程。
【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關系。
解:設點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合
由距離公式,點適合的條件可表示為
①
將①式移項后再兩邊平方,得
化簡得
由題意,曲線在軸的上方,所以,雖然原點的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為,它是關于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示。
【練習鞏固】
題目:在正三角形內有一動點,已知到三個頂點的距離分別為、、,且有,求點軌跡方程。
分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示。設、的坐標為、,則的坐標為,的坐標為。
根據條件,代入坐標可得
化簡得
、
由于題目中要求點在三角形內,所以,在結合①式可進一步求出、的范圍,最后曲線方程可表示為
【小結】師生共同總結:
。1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
(3)請對求解曲線方程的五個步驟進行評價。各步驟的作用,哪步重要,哪步應注意什么?
【作業(yè)】課本第72頁練習1,2,3;
高中數學教案7
教學目標:
1.了解反函數的概念,弄清原函數與反函數的定義域和值域的關系.
2.會求一些簡單函數的反函數.
3.在嘗試、探索求反函數的過程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學思想方法的認識.
4.進一步完善學生思維的深刻性,培養(yǎng)學生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力.
教學重點:求反函數的方法.
教學難點:反函數的概念.
教學過程:
教學活動
設計意圖一、創(chuàng)設情境,引入新課
1.復習提問
①函數的概念
、趛=f(x)中各變量的意義
2.同學們在物理課學過勻速直線運動的位移和時間的函數關系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數;在t=中,時間t是位移S的函數.在這種情況下,我們說t=是函數S=vt的反函數.什么是反函數,如何求反函數,就是本節(jié)課學習的內容.
3.板書課題
由實際問題引入新課,激發(fā)了學生學習興趣,展示了教學目標.這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性.
二、實例分析,組織探究
1.問題組一:
(用投影給出函數與;與()的圖象)
(1)這兩組函數的圖像有什么關系?這兩組函數有什么關系?(生答:與的圖像關于直線y=x對稱;與()的圖象也關于直線y=x對稱.是求一個數立方的運算,而是求一個數立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)
(2)由,已知y能否求x?
(3)是否是一個函數?它與有何關系?
(4)與有何聯系?
2.問題組二:
(1)函數y=2x 1(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?
(2)函數(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?
(3)函數 ()的定義域與函數()的值域有什么關系?
3.滲透反函數的概念.
(教師點明這樣的函數即互為反函數,然后師生共同探究其特點)
從學生熟知的函數出發(fā),抽象出反函數的概念,符合學生的認知特點,有利于培養(yǎng)學生抽象、概括的能力.
通過這兩組問題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設計問題,使學生對反函數有一個直觀的粗略印象,為進一步抽象反函數的概念奠定基礎.
三、師生互動,歸納定義
1.(根據上述實例,教師與學生共同歸納出反函數的定義)
函數y=f(x)(x∈A) 中,設它的值域為 C.我們根據這個函數中x,y的關系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數.這樣的函數 x = j (y)(y ∈C)叫做函數y=f(x)(x∈A)的反函數.記作: .考慮到"用 x表示自變量, y表示函數"的習慣,將中的x與y對調寫成.
2.引導分析:
1)反函數也是函數;
2)對應法則為互逆運算;
3)定義中的"如果"意味著對于一個任意的函數y=f(x)來說不一定有反函數;
4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;
5)函數y=f(x)與x=f(y)互為反函數;
6)要理解好符號f;
7)交換變量x、y的原因.
3.兩次轉換x、y的對應關系
(原函數中的自變量x與反函數中的函數值y 是等價的,原函數中的函數值y與反函數中的自變量x是等價的)
4.函數與其反函數的關系
函數y=f(x)
函數
定義域
A
C
值 域
C
A
四、應用解題,總結步驟
1.(投影例題)
【例1】求下列函數的反函數
(1)y=3x-1 (2)y=x 1
【例2】求函數的反函數.
(教師板書例題過程后,由學生總結求反函數步驟.)
2.總結求函數反函數的步驟:
1° 由y=f(x)反解出x=f(y).
2° 把x=f(y)中 x與y互換得.
3° 寫出反函數的定義域.
(簡記為:反解、互換、寫出反函數的定義域)【例3】(1)有沒有反函數?
(2)的反函數是________.
(3)(x<0)的反函數是__________.
在上述探究的基礎上,揭示反函數的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產生矛盾沖突,體會反函數.在剖析定義的過程中,讓學生體會函數與方程、一般到特殊的數學思想,并對數學的符號語言有更好的把握.
通過動畫演示,表格對照,使學生對反函數定義從感性認識上升到理性認識,從而消化理解.
通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養(yǎng)學生分析、思考的習慣,以及歸納總結的能力.
題目的.設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進.并體現了對定義的反思理解.學生思考練習,師生共同分析糾正.
五、鞏固強化,評價反饋
1.已知函數 y=f(x)存在反函數,求它的反函數 y =f( x)
(1)y=-2x 3(xR) (2)y=-(xR,且x)
( 3 ) y=(xR,且x)
2.已知函數f(x)=(xR,且x)存在反函數,求f(7)的值.
五、反思小結,再度設疑
本節(jié)課主要研究了反函數的定義,以及反函數的求解步驟.互為反函數的兩個函數的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究.
(讓學生談一下本節(jié)課的學習體會,教師適時點撥)
進一步強化反函數的概念,并能正確求出反函數.反饋學生對知識的掌握情況,評價學生對學習目標的落實程度.具體實踐中可采取同學板演、分組競賽等多種形式調動學生的積極性."問題是數學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂.
六、作業(yè)
習題2.4第1題,第2題
進一步鞏固所學的知識.
教學設計說明
"問題是數學的心臟".一個概念的形成是螺旋式上升的,一般要經過具體到抽象,感性到理性的過程.本節(jié)教案通過一個物理學中的具體實例引入反函數,進而又通過若干函數的圖象進一步加以誘導剖析,最終形成概念.
反函數的概念是教學中的難點,原因是其本身較為抽象,經過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質上去把握反函數的概念.為此,我們大膽地使用教材,把互為反函數的兩個函數的圖象關系預先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質,進而得出概念,這正是數學研究的順序,符合學生認知規(guī)律,有助于概念的建立與形成.另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用.通過對函數與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環(huán)節(jié),充分調動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養(yǎng)學生的逆向思維.使學生自然成為學習的主人。
高中數學教案8
一.教材分析:
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
二.目標分析:
教學重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關數學對象;
2.過程與方法
(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節(jié)所學知識.
3.情感.態(tài)度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
三.教法分析
1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節(jié)課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.
四.過程分析
(一)創(chuàng)設情景,揭示課題
1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。
(2)問題:像“家庭”、“學!薄ⅰ鞍嗉墶钡,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征
由此引出這節(jié)要學的內容。
設計意圖:既激發(fā)了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構概念
1.教師利用多媒體設備向學生投影出下面7個實例:
(1)1—20以內的所有質數;(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國; (4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的.點;
(7)國興中學20xx年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發(fā)表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.
設計意圖:通過實例讓學生感受集合的概念,激發(fā)學習的興趣,培養(yǎng)學生樂于求索的精神
(三)質疑答辯,發(fā)展思維
1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數;(2)我國的小河流.讓學生充分發(fā)表自己的建解.
3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,
高一(4)班的一位同學,那么a,b與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.
如果a是集合A的元素,就說a屬于集合A,記作a?A.
如果a不是集合A的元素,就說a不屬于集合A,記作a?A.
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關系分別是什么?請用數學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1A組第1題.
6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據問題選擇適當的集合表示法?
使學生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(1)用自然語言描述集合{1,3,5,7,9}; (2)用例舉法表示集合A?{x?N|1?x?8}
(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業(yè)
小結:在師生互動中,讓學生了解或體會下例問題:
1.本節(jié)課我們學習了哪些知識內容? 2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):1.課后書面作業(yè):第13頁習題1.1A組第4題.
2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種
呢?如何表示?請同學們通過預習教材.
五.板書分析
高中數學教案9
教學目標:
(1)理解子集、真子集、補集、兩個集合相等概念;
(2)了解全集、空集的意義。
(3)掌握有關子集、全集、補集的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學生的符號表示的能力;
(4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;
(5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養(yǎng)學生的數學結合的數學思想;
(6)培養(yǎng)學生用集合的觀點分析問題、解決問題的能力。
教學重點:
子集、補集的概念
教學難點:
弄清元素與子集、屬于與包含之間的區(qū)別
教學用具:
幻燈機
教學過程設計
(一)導入新課
上節(jié)課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識。
【提出問題】(投影打出)
已知xx,xx,xx,問:
1、哪些集合表示方法是列舉法。
2、哪些集合表示方法是描述法。
3、將集M、集從集P用圖示法表示。
4、分別說出各集合中的元素。
5、將每個集合中的元素與該集合的關系用符號表示出來、將集N中元素3與集M的關系用符號表示出來。
6、集M中元素與集N有何關系、集M中元素與集P有何關系。
【找學生回答】
1、集合M和集合N;(口答)
2、集合P;(口答)
3、(筆練結合板演)
4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)
5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結合板演)
6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)
【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經常出現,本節(jié)將研究有關兩個集合間關系的問題、
(二)新授知識
1、子集
(1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。
記作:xx讀作:A包含于B或B包含A
當集合A不包含于集合B,或集合B不包含集合A時,則記作:AxxB或BxxA、
性質:①xx(任何一個集合是它本身的子集)
、趚x(空集是任何集合的子集)
【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?
【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。
因為B的子集也包括它本身,而這個子集是由B的全體元素組成的空集也是B的子集,而這個集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。
(2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。
例:xx,可見,集合xx,是指A、B的所有元素完全相同。
(3)真子集:對于兩個集合A與B,如果xx,并且xx,我們就說集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。
【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集!
集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內部分別表示集合A,B。
【提問】
(1)xx寫出數集N,Z,Q,R的包含關系,并用文氏圖表示。
(2)xx判斷下列寫法是否正確
①xxAxx②xxAxx③xx④AxxA
性質:
(1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;
(2)如果xx,xx,則xx。
例1xx寫出集合xx的所有子集,并指出其中哪些是它的真子集、
解:集合xx的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。
【注意】(1)子集與真子集符號的方向。
(2)易混符號
、佟皒x”與“xx”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如xxR,{1}xx{1,2,3}
②{0}與xx:{0}是含有一個元素0的集合,xx是不含任何元素的集合。
如:xx{0}。不能寫成xx={0},xx∈{0}
例2xx見教材P8(解略)
例3xx判斷下列說法是否正確,如果不正確,請加以改正、
(1)xx表示空集;
(2)空集是任何集合的真子集;
(3)xx不是xx;
(4)xx的所有子集是xx;
(5)如果xx且xx,那么B必是A的真子集;
(6)xx與xx不能同時成立、
解:(1)xx不表示空集,它表示以空集為元素的`集合,所以(1)不正確;
(2)不正確、空集是任何非空集合的真子集;
(3)不正確、xx與xx表示同一集合;
(4)不正確、xx的所有子集是xx;
(5)正確
(6)不正確、當xx時,xx與xx能同時成立、
例4xx用適當的符號(xx,xx)填空:
(1)xx;xx;xx;
(2)xx;xx;
(3)xx;
(4)設xx,xx,xx,則AxxBxxC、
解:(1)0xx0xx;
(2)xx=xx,xx;
(3)xx,xx∴xx;
(4)A,B,C均表示所有奇數組成的集合,∴A=B=C、
【練習】教材P9
用適當的符號(xx,xx)填空:
(1)xx;xx(5)xx;
(2)xx;xx(6)xx;
(3)xx;xx(7)xx;
(4)xx;xx(8)xx、
解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、
提問:見教材P9例子
(二)xx全集與補集
1、補集:一般地,設S是一個集合,A是S的一個子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作xx,即
、
A在S中的補集xx可用右圖中陰影部分表示、
性質:xxS(xxSA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};
(2)若A={0},則xxNA=N;
(3)xxRQ是無理數集。
2、全集:
如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用xx表示。
注:xx是對于給定的全集xx而言的,當全集不同時,補集也會不同。
例如:若xx,當xx時,xx;當xx時,則xx。
例5xx設全集xx,xx,xx,判斷xx與xx之間的關系。
解:
練習:見教材P10練習
1、填空:
xx,xx,那么xx,xx。
解:xx,
2、填空:
(1)如果全集xx,那么N的補集xx;
(2)如果全集,xx,那么xx的補集xx(xx)=xx、
解:(1)xx;(2)xx。
(三)小結:本節(jié)課學習了以下內容:
1、五個概念(子集、集合相等、真子集、補集、全集,其中子集、補集為重點)
2、五條性質
(1)空集是任何集合的子集。ΦxxA
(2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)
(3)任何一個集合是它本身的子集。
(4)如果xx,xx,則xx、
(5)xxS(xxSA)=A
3、兩組易混符號:(1)“xx”與“xx”:(2){0}與
(四)課后作業(yè):見教材P10習題1、2
高中數學教案10
教學目標
(1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題。
(2)理解曲線的方程、方程的曲線的概念,能根據曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念。
。3)通過曲線方程概念的教學,培養(yǎng)學生數與形相互聯系、對立統(tǒng)一的辯證唯物主義觀點。
。4)通過求曲線方程的教學,培養(yǎng)學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法。
。5)進一步理解數形結合的思想方法。
教學建議
教材分析
。1)知識結構
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質。曲線方程的概念和求曲線方程的問題又有內在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質則更在其后,本節(jié)不予研究。因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題。
。2)重點、難點分析
、俦竟(jié)內容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想。
、诒竟(jié)的難點是曲線方程的概念和求曲線方程的方法。
教法建議
。1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系。曲線與方程對應關系的基礎是點與坐標的對應關系。注意強調曲線方程的完備性和純粹性。
。2)可以結合已經學過的'直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備。
。3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則。
。4)從集合與對應的觀點可以看得更清楚:
設 表示曲線 上適合某種條件的點 的集合;
表示二元方程的解對應的點的坐標的集合。
可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即
。5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數方程(曲線的方程),這個過渡是一個從幾何向代數不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做。同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得。教學中對課本例2的解法分析很重要。
這五個步驟的實質是將產生曲線的幾何條件逐步轉化為代數方程,即
文字語言中的幾何條件 數學符號語言中的等式 數學符號語言中含動點坐標 , 的代數方程 簡化了的 , 的代數方程
由此可見,曲線方程就是產生曲線的幾何條件的一種表現形式,這個形式的特點是“含動點坐標的代數方程。”
。6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”。
高中數學教案11
1.教學目標
(1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;
2.會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程.
(2)能力目標: 1.進一步培養(yǎng)學生用解析法研究幾何問題的能力;
2.使學生加深對數形結合思想和待定系數法的理解;
3.增強學生用數學的意識.
(3)情感目標:培養(yǎng)學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發(fā)學生的學習興趣.
2.教學重點.難點
(1)教學重點:圓的.標準方程的求法及其應用.
(2)教學難點:會根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰
當的坐標系解決與圓有關的實際問題.
3.教學過程
(一)創(chuàng)設情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?
[引導] 畫圖建系
[學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)
解:以某一截面半圓的圓心為坐標原點,半圓的直徑ab所在直線為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。
(二)深入探究(獲得新知)
問題二:1.根據問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時又如何呢?
[學生活動] 探究圓的方程。
[教師預設] 方法一:坐標法
如圖,設m(x,y)是圓上任意一點,根據定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}
由兩點間的距離公式,點m適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應用舉例(鞏固提高)
i.直接應用(內化新知)
問題三:1.寫出下列各圓的方程(課本p77練習1)
(1)圓心在原點,半徑為3;
(2)圓心在 ,半徑為 ;
(3)經過點 ,圓心在點 .
2.根據圓的方程寫出圓心和半徑
(1) ; (2) .
ii.靈活應用(提升能力)
問題四:1.求以 為圓心,并且和直線 相切的圓的方程.
[教師引導]由問題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過圓上一點 的切線方程.
[學生活動]探究方法
[教師預設]
方法一:待定系數法(利用幾何關系求斜率-垂直)
方法二:待定系數法(利用代數關系求斜率-聯立方程)
方法三:軌跡法(利用勾股定理列關系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關系式)
3.你能歸納出具有一般性的結論嗎?
已知圓的方程是 ,經過圓上一點 的切線的方程是: .
iii.實際應用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).
[多媒體課件演示創(chuàng)設實際問題情境]
(四)反饋訓練(形成方法)
問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.
3.求圓x2 y2=13過點(-2,3)的切線方程.
4.已知圓的方程為 ,求過點 的切線方程.
高中數學教案12
一、預習目標
預習《平面向量應用舉例》,體會向量是一種處理幾何問題、物理問題等的工具,建立實際問題與向量的聯系。
二、預習內容
閱讀課本內容,整理例題,結合向量的運算,解決實際的幾何問題、物理問題。另外,在思考一下幾個問題:
1、例1如果不用向量的方法,還有其他證明方法嗎?
2、利用向量方法解決平面幾何問題的“三步曲”是什么?
3、例3中,
、艦楹沃禃r,|F1|最小,最小值是多少?
、苵F1|能等于|G|嗎?為什么?
三、提出疑惑
同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中疑惑點疑惑內容。
課內探究學案
一、學習內容
1、運用向量的有關知識(向量加減法與向量數量積的運算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。
2、運用向量的有關知識解決簡單的物理問題。
二、學習過程
探究一:
(1)向量運算與幾何中的結論"若,則,且所在直線平行或重合"相類比,你有什么體會?
(2)舉出幾個具有線性運算的幾何實例。
例1、證明:平行四邊形兩條對角線的平方和等于四條邊的平方和。
已知:平行四邊形ABCD。
求證:
試用幾何方法解決這個問題,利用向量的方法解決平面幾何問題的“三步曲”?
(1)建立平面幾何與向量的聯系,
(2)通過向量運算,研究幾何元素之間的關系,
(3)把運算結果“翻譯”成幾何關系。
例2,如圖,平行四邊形ABCD中,點E、F分別是AD、DC邊的中點,BE、BF分別與AC交于R、T兩點,你能發(fā)現AR、RT、TC之間的關系嗎?
探究二:兩個人提一個旅行包,夾角越大越費力。在單杠上做引體向上運動,兩臂夾角越小越省力。這些力的問題是怎么回事?
例3,在日常生活中,你是否有這樣的經驗:兩個人共提一個旅行包,夾角越大越費力;在單杠上作引體向上運動,兩臂的夾角越小越省力。你能從數學的角度解釋這種現象嗎?
請同學們結合剛才這個問題,思考下面的問題:
、艦楹沃禃r,|F1|最小,最小值是多少?
、苵F1|能等于|G|嗎?為什么?
例4如圖,一條河的兩岸平行,河的寬度m,一艘船從A處出發(fā)到河對岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,問行駛航程最短時,所用的'時間是多少(精確到0。1min)?
變式訓練:兩個粒子A、B從同一源發(fā)射出來,在某一時刻,它們的位移分別為,(1)寫出此時粒子B相對粒子A的位移s;(2)計算s在方向上的投影。
三、反思總結
結合圖形特點,選定正交基底,用坐標表示向量進行運算解決幾何問題,體現幾何問題。
代數化的特點,數形結合的數學思想體現的淋漓盡致。向量作為橋梁工具使得運算簡練標致,又體現了數學的美。有關長方形、正方形、直角三角形等平行、垂直等問題常用此法。
本節(jié)主要研究了用向量知識解決平面幾何問題和物理問題;掌握向量法和坐標法,以及用向量解決實際問題的步驟。
高中數學教案13
教學目標
1.了解映射的概念,象與原象的概念,和一一映射的概念.
。1)明確映射是特殊的對應即由集合 ,集合 和對應法則f三者構成的一個整體,知道映射的特殊之處在于必須是多對一和一對一的對應;
。2)能準確使用數學符號表示映射, 把握映射與一一映射的區(qū)別;
。3)會求給定映射的指定元素的象與原象,了解求象與原象的方法.
2.在概念形成過程中,培養(yǎng)學生的觀察,比較和歸納的能力.
3.通過映射概念的學習,逐步提高學生對知識的探究能力.
教學建議
教材分析
。1)知識結構
映射是一種特殊的對應,一一映射又是一種特殊的映射,而且函數也是特殊的映射,它們之間的關系可以通過下圖表示出來,如圖:
由此我們可從集合的包含關系中幫助我們把握相關概念間的區(qū)別與聯系.
。2)重點,難點分析
本節(jié)的教學重點和難點是映射和一一映射概念的形成與認識.
、儆成涞母拍钍潜容^抽象的概念,它是在初中所學對應的基礎上發(fā)展而來.教學中應特別強調對應集合 B中的唯一這點要求的理解;
映射是學生在初中所學的對應的基礎上學習的,對應本身就是由三部分構成的整體,包括集 合A和集合B及對應法則f,由于法則的.不同,對應可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應就必須保證讓A中之任一與B中元素相對應,所以滿足一對一和多對一的對應就能體現出“任一對唯一”.
、诙灰挥成溆衷谟成涞幕A上增加新的要求,決定了它在學習中是比較困難的.
教法建議
。1)在映射概念引入時,可先從學生熟悉的對應入手, 選擇一些具體的生活例子,然后再舉一些數學例子,分為一對多、多對一、多對一、一對一四種情況,讓學生認真觀察,比較,再引導學生發(fā)現其中一對一和多對一的對應是映射,逐步歸納概括出映射的基本特征,讓學生的認識從感性認識到理性認識.
。2)在剛開始學習映射時,為了能讓學生看清映射的構成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學生可以比較直觀的認識映射,而后再選擇用抽象的數學符號表示映射,比如:
。3)對于學生層次較高的學?梢栽诮o出定義后讓學生根據自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學生從中發(fā)現映射的特點,并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對于學生層次較低的學校,則可以由教師給出一些例子讓學生觀察,教師引導學生發(fā)現映射的特點,一起概括.最后再讓學生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.
。4)關于求象和原象的問題,應在計算的過程中總結方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數解)加深對映射的認識.
。5)在教學方法上可以采用啟發(fā),討論的形式,讓學生在實例中去觀察,比較,啟發(fā)學生尋找共性,共同討論映射的特點,共同舉例,計算,最后進行小結,教師要起到點撥和深化的作用.
教學設計方案
2.1映射
教學目標(1)了解映射的概念,象與原象及一一映射的概念.
(2)在概念形成過程中,培養(yǎng)學生的觀察,分析對比,歸納的能力.
(3)通過映射概念的學習,逐步提高學生的探究能力.
教學重點難點::映射概念的形成與認識.
教學用具:實物投影儀
教學方法:啟發(fā)討論式
教學過程:
一、引入
在初中,我們已經初步探討了函數的定義并研究了幾類簡單的常見函數.在高中,將利用前面集合有關知識,利用映射的觀點給出函數的定義.那么映射是什么呢?這就是我們今天要詳細的概念.
二、新課
在前一章集合的初步知識中,我們學習了元素與集合及集合與集合之間的關系,而映射是重點研究兩個集合的元素與元素之間的對應關系.這要先從我們熟悉的對應說起(用投影儀打出一些對應關系,共6個)
我們今天要研究的是一類特殊的對應,特殊在什么地方呢?
提問1:在這些對應中有哪些是讓A中元素就對應B中唯一一個元素?
讓學生仔細觀察后由學生回答,對有爭議的,或漏選,多選的可詳細說明理由進行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個集中在一起)
提問2:能用自己的語言描述一下這幾個對應的共性嗎?
經過師生共同推敲,將映射的定義引出.(主體內容由學生完成,教師做必要的補充)
高中數學教案14
1. 該生能以校規(guī)班規(guī)嚴格要求自己。有較強的集體榮譽感,學習態(tài)度認真,能吃苦,肯下功夫,成績穩(wěn)定。生活艱苦樸素,待人熱情大方,是個基礎扎實,品德兼優(yōu)的好學生。
2. 該生能嚴格遵守學校的規(guī)章制度。尊敬師長,團結同學。熱愛集體,積極配合其他同學搞好班務工作,勞動積極肯干。學習刻苦認真,勤學好問,學習成績穩(wěn)定,學風和工作作風都較為踏實,堅持出滿勤,并能積極參加社會實踐和文體活動,勞動積極。是一位發(fā)展全面的好學生。
3. 你是同學擁護、老師信任的班委,乖巧懂事、伶俐開朗、自信大方、樂觀合群,是同學們學習的榜樣。你愛護集體榮譽,有很強的工作能力,總是及時協(xié)助老師完成班務工作,是老師的得力幫手。你心性坦蕩,個性鮮明,能大膽說出自己的想法,難能可貴。而你在運動場上的爆發(fā)力更讓老師同學們驚嘆!潛力深厚,希望在高中時期能逐漸發(fā)掘出來!
4. 你是個做事小心翼翼,感情細膩豐富的女孩,每次看你認真的樣子老師都很感動。你也是幸運的,周邊有很多人都在關愛著你,所以,對他們,尤其是父母,記得不要太莽撞,不要太任性,要學著體諒,學著換位思考,學著懂事。另外,今后要多運動、多鍛煉,有健康才能成就美好未來!
5. 你堅強勇敢、樂觀大方的性格讓老師非常欣賞。學習上始終保持著上進好學的決心和韌性,生活中始終能做到豁達開朗,還有著良好的審美和繪畫的專長,令人欽佩!以入世的態(tài)度做事,以出世的態(tài)度做人,這是我送你的一句話,希望你保持好心態(tài),迎接新的學習生活。
6. 最有希望得成功者,并不是才干出眾的人,而是那些最善于利用時機去努力開創(chuàng)的人。你是很有才華的孩子,老師希望你能把握好機會,求得上進。你聰明,但也有著許多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,堅定目標致力于學習,定能大限度地發(fā)揮你的聰明才智!
7. 該生遵紀守法,積極參加社會實踐和文體活動,集體觀念強,勞動積極肯干。是一位誠實守信,思想上進,尊敬老師,團結同學,熱心助人,積極參加班集體活動,有體育特長,學習認真,具有較好綜合素質的優(yōu)秀學生。
8. 你聰穎活潑,渾身洋溢青春氣息。你愛好廣泛,善鉆精思,具備一定能力,潛質無限。但是在有些時候,在面臨一些問題的時候,你總表現得太過緊張,其實,征服畏懼、建立自信的最快最確實的方法,就是大膽地去做你認為害怕的事,直到你獲得成功的經驗。繼續(xù)努力!
9. 你是對3班這個集體的成長貢獻很大的孩子,是老師的得力幫手。你干練沉穩(wěn),堅強隱忍,能從大局出發(fā)考慮問題,在很多時候能獨當一面。你獨立能力強,能夠吃苦,但在進入高中的學習上卻顯得有些吃力。其實你還有很深的潛力尚未挖掘,找對方法,好好加油,世上沒有絕望的處境,只有對處境絕望的人,請樂觀一點,踏實地走好接下來的每一步!
10. 你是個能獨立、有主見的女孩,有自己的想法,有一定的決斷力。但是獨立不代表乖張,有想法不代表恣意妄為。令人高興的是,你在這點上做的還是不錯的。晟君,老師希望你能一如既往地關注于學習而不懈怠,能堅持懷揣著平和感恩的心態(tài)簡單快樂地生活。
11. 你給我的第一印象是有些沉默,其實和朋友在一起時還是很有自己想法的對吧?你看,你布置的新年教室多么出彩!請繼續(xù)秀出真實而精彩的你!這半個學期的學習有點力不從心,請保持謹慎和細心,保持好的學習習慣,及時彌補所缺漏的環(huán)節(jié),大步向前進!
12. 該生認真遵守學校的規(guī)章制度,積極參加社會實踐和文體活動,集體觀念強,勞動積極肯干。尊敬師長,團結同學。學習態(tài)度認真,能吃苦,肯下功夫,成績穩(wěn)定上升。是有理想有抱負,基礎扎實,心理素質過硬、全面發(fā)展的優(yōu)秀學生。
13. 你是一個真誠待人、溫柔可愛的女生。也許是因為你有些不緊不慢的性格,所以在學習上有時候行動力不夠堅決,造成了學習成績的不穩(wěn)定。請多利用假期時間好好補缺補漏,向上的姿態(tài)才是最重要的!
14. 老師同學們都在說你是個很有責任心和上進心的孩子,在班級需要的時候,你承擔了勞動委員的重任,經常最后一個離開,就為了班級能有個整潔的環(huán)境。老師很感謝你!而更可貴的是,你懂得安排自己的時間,在工作的空隙抓緊時間做作業(yè)。希望下學期你的學習成績也能隨你的毅力和執(zhí)著步步攀升,加油,羽騰!
15. 其實你擁有你自己都不確知的才華,從你的文字中可以讀出這樣的信息:你時常沉醉在自己的小世界中,做自己喜歡做的事情。老師希望你能敞開心扉,多與旁人交流你快樂的體驗和想法,不要吝嗇展示自己!還有,成功需要成本,時間也是一種成本,對時間的珍惜就是對成本的節(jié)約。請務必抓緊每寸光陰,努力學習!
16. 你知道嗎?在世界上那些最容易的事情中,拖延時間是最不費力的。而學習卻是艱辛的勞動過程。表面安靜的你其實心里有著自己的想法和煩憂。于是在不經意間,精力被不自覺地轉移到一些瑣事上,卻總無法完全集中心智于學業(yè)。也許你也已經意識到,也有了些許進步,那么請千萬記住要持之以恒,要付出比別人更多倍的努力!
17. 你是班級的數學科代表,老師很高興選擇你擔任這個職務,不僅能促進自己的進步,而且也展現了你負責工作的一面。但是學習是要和工作一樣,需要一絲不茍的態(tài)度,包括上課的聽講是否及時而有效,包括功課的完成是否嚴謹而認真。下學期,愿看到一個更加全神貫注更加專心致志的你!
18. 我一直難忘在運動會上你擔任前導牌的樣子,為班級添光增彩了不少!你有著繪畫的特長,是個善良、真誠的女孩,有著細膩豐富的內心,也許只需一點鼓勵,你便會勇敢走下去,希望能在平時多聽見你爽朗的笑聲!
19. 可愛、熱情、謹小慎微,這都是你的代名詞。你略為靦腆的微笑讓人印象深刻。老師一直認為你是能夠認真仔細地作好每一件事情、成就每一個細節(jié)的,因此,希望你能珍惜時間,提高效率,在學習上狠狠加油!
20. 其實,任何事都是有重量的',那么,就看你把它變成壓力還是重力了。在這個方面,我很高興地看到你做的很好,你學習自覺,成績便是努力的證明。老師安排你做物理科代表就是希望能多培養(yǎng)你的責任意識、大局意識和管理能力,希望以后在這方面能看到你更加出色的表現!
21. 你是個可愛善良,懂事乖巧的女孩。作為語文科代表,兢兢業(yè)業(yè),一絲不茍。你對人也是特別真誠熱情,偶爾透露出的憂郁是旁人不易察覺的。但是你知道,成長就是破蛹成蝶的過程,高中是人生的重要階段,勇敢地邁好每一步吧,享受成長帶來的所有痛苦和快樂!
22. 你很有能力,也很潛力,但欠缺的卻是耐力和毅力。君子厚積而薄發(fā),希望你能振作精神,跟上進度,迎頭趕上,期待你獲得更大的進步!
23. 你曾經和我說過你的理想,但你對理想的憧憬和你所付出的努力程度卻總是難成正比。若現在你覺得有障礙擋在前行之路上,那就說明你還沒有把目標看的足夠清楚。寧在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在臨事時無法適從。你現在欠缺的就是對自己發(fā)狠奮進的恒心,柏宇,“要想人前顯貴,必定人后受罪”,成功要靠實踐去爭取,而不是光靠幾句好聽的決心話!
24. 你乖巧大方,組織能力一流,但在學習上總顯得有些力不從心?祚R加鞭迎頭趕上固然是必需,但也別太心急,要知道,欲速則不達,只要踏實努力,不懂就問,采用適合自己的學習方法,就會看到進步。也許剛開始的時候進步很小,小到你看不見,但是不要灰心,萬事開頭難!將事前的憂慮,換為事前的思考和計劃,徹底放松,加強鍛煉,養(yǎng)足精神再迎戰(zhàn)!你能做到的,蔡煒,加油!
25. 該生能遵守校紀班規(guī),尊敬師長,能與同學和睦相處,勤學好問,有較強的獨立鉆研能力,分析問題比較深入、全面,在某些問題上有獨特的見解,學習成績在班上一直能保持前茅,樂于助人,能幫助學習有困難的同學。
26. 不論在體育場還是教室里,看到你神采奕奕的樣子,總讓人聯想到“英姿颯爽”這四個字。這確是一個高中生應該有的精神面貌。你做事認真,顧全大局,真的非常難得。希望能保持這樣良好的狀態(tài),繼續(xù)前進!也希望能夠多和老師同學交流,多提些對班集體建設的好建議!
27. 該生能以校規(guī)班規(guī)嚴格要求自己,積極參加社會實踐和文體活動。尊敬師長,團結同學。集體觀念強,勞動積極肯干。積極參加各種集體活動和社會實踐活動。學習目的明確,刻苦認真,成績穩(wěn)定,是一個有理想、有抱負,基礎扎實,心理素質過硬,全面發(fā)展的優(yōu)秀學生。
28. 我很高興看到你是個有上進心,有責任感,能夠讓家人、師長寬慰的孩子。有努力就有回報,你下半學期的表現不就證明了這一點嗎?進步是隨著時間節(jié)節(jié)上升的,不要太過急躁,要知道,若你不給自己設限,則人生中就沒有限制你發(fā)揮的藩籬。新學期要重整旗鼓,再接再勵!
29. ××× 獨立性較強,對自己的能力也有準確的定位。建議今后學習上要養(yǎng)成勤思愛問的習慣,不能做井底之蛙,滿足于現狀,要充分利用他人的智慧,最后達到“好風憑借力,送我上青云”的目的。
30. ××× 每天在教室,都能看到你埋頭苦讀的身影,可見讀書的態(tài)度很端正;而你每一次考試的成績雖然不拔尖,卻是在穩(wěn)步前進,可見讀書的效率還不錯。請繼續(xù)保持這種虛心求學、穩(wěn)步前進的態(tài)勢,相信一年半以后的高考,你必將嶄露頭角,脫穎而出。
高中數學教案15
一、教學目標
1、知識與能力目標
①使學生理解數列極限的概念和描述性定義。
②使學生會判斷一些簡單數列的極限,了解數列極限的“e—N"定義,能利用逐步分析的方法證明一些數列的極限。
、弁ㄟ^觀察運動和變化的過程,歸納總結數列與其極限的特定關系,提高學生的數學概括能力和抽象思維能力。
2、過程與方法目標
培養(yǎng)學生的極限的思想方法和獨立學習的能力。
3、情感、態(tài)度、價值觀目標
使學生初步認識有限與無限、近似與精確、量變與質變的辯證關系,培養(yǎng)學生的辯證唯物主義觀點。
二、教學重點和難點
教學重點:數列極限的概念和定義。
教學難點:數列極限的“ε―N”定義的理解。
三、教學對象分析
這節(jié)課是數列極限的第一節(jié)課,足學生學習極限的入門課,對于學生來說是一個全新的內容,學生的思維正處于由經驗型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內容求球的表面積和體積時對極限思想已有接觸,而學生在以往的數學學習中主要接觸的是關于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導他們作出描述性定義“當n無限增大時,數列{an}中的項an無限趨近于常數A,也就是an與A的差的絕對值無限趨近于0”,并能用這個定義判斷一些簡單數列的極限。但要使他們在一節(jié)課內掌握“ε—N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個例子,歸納研究一些簡單的數列的極限。使學生理解極限的基本概念,認識什么叫做數列的極限以及數列極限的定義即可。
四、教學策略及教法設計
本課是采用啟發(fā)式講授教學法,通過多媒體課件演示及學生討論的方法進行教學。通過學生比較熟悉的一個實際問題入手,引起學生的`注意,激發(fā)學生的學習興趣。然后通過具體的兩個比較簡單的數列,運用多媒體課件演示向學生展示了數列中的各項隨著項數的增大,無限地趨向于某個常數的過程,讓學生在觀察的基礎上討論總結出這兩個數列的特征,從而得出數列極限的一個描述性定義。再在教師的引導下分析數列極限的各種不同情況。從而對數列極限有了直觀上的認識,接著讓學生根據數列中各項的情況判斷一些簡單的數列的極限。從而達到深化定義的效果。最后進行練習鞏固,通過這樣的一個完整的教學過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學生逐步地了解極限這個新的概念,為下節(jié)課的極限的運算及應用做準備,為以后學習高等數學知識打下基礎。在整個教學過程中注意突出重點,突破難點,達到教學目標的要求。
五、教學過程
1、創(chuàng)設情境
課件展示創(chuàng)設情境動畫。
今天我們將要學習一個很重要的新的知識。
情境
。1)我國古代數學家劉徽于公元263年創(chuàng)立“割圓術”,“割之彌細,所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。
情境
(2)我國古代哲學家莊周所著的《莊子·天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之?如此下去,無限次地切,每次都切一半,問是否會切完?
大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠不會變成零。從而引出極限的概念。
2、定義探究
展示定義探索(一)動畫演示。
問題1:請觀察以下無窮數列,當n無限增大時,a,I的變化趨勢有什么特點?
。1)1/2,2/3,3/4,n/n—1
。2)0.9,0.99,0.999,0.9999,1—1/10n
問題2:觀察課件演示,請分析以上兩個數列隨項數n的增大項有那些特點?
師生一起歸納總結出以下結論:數列(1)項數n無限增大時,項無限趨近于1;數列(2)項數n無限增大時,項無限趨近于1。
那么就把1叫數列(1)的極限,1叫數列(2)的極限。這兩個數列只是形式不同,它們都是隨項數n的無限增大,項無限趨近于某一確定常數,這個常數叫做這個數列的極限。
那么,什么叫數列的極限呢?對于無窮數列an,如果當n無限增大時,an無限趨向于某一個常數A,則稱A是數列an的極限。
提出問題3:怎樣用數學語言來定量描述呢?怎樣用數學語言來描述上述數列的變化趨勢?
展示定義探索(二)動畫演示。
師生共同總結發(fā)現在數軸上兩點間距離越小,項與1越趨近,因此可以借助兩點間距離無限小的方式來描述項無限趨近常數。無論預先指定多么小的正數e,如取e=O—1,總能在數列中找到一項am,使得an項后面的所有項與1的差的絕對值都小于ε,若取£=0.0001,則第6項后面的所有項與1的差的絕對值都小于ε,即1是數列(1)的極限。最后,師生共同總結出數列的極限定義中應包含哪量(用這些量來描述數列1的極限)。
數列的極限為:對于任意的ε>0,如果總存在自然數N,當n>N時,不等式|an—A|n的極限。
課件可以實現任意輸入一個n值,可以計算出相應的數列第n項的值,并且動畫演示數列的變化過程。如圖1所示是課件運行時的一個畫面。
定義探索動畫(二)課件可以實現任意輸入一個n值,可以計算出相應的數列第n項的值和Ian一1I的值,并且動畫演示出第an項和1之間的距離。如圖2所示是課件運行時的一個畫面。
3、知識應用
這里舉了3道例題,與學生一塊思考,一起分析作答。
例1、已知數列:
1,—1/2,1/3,—1/4,1/5,(—1)n+11/n,(1)計算an—0(2)第幾項后面的所有項與0的差的絕對值都小于0.017都小于任意指定的正數。
(3)確定這個數列的極限。
例2、已知數列:
已知數列:3/2,9/4,15/8,2+(—1/2)n。
猜測這個數列有無極限,如果有,應該是什么數?并求出從第幾項開始,各項與這個極限的差都小于0.1,從第幾項開始,各項與這個極限的差都小于0.017
例3、求常數數列一7,一7,一7,一7,的極限。
4、知識小結
這節(jié)課我們研究了數列極限的概念,對數列極限有了初步的認識。數列極限研究的是無限變化的趨勢,而通過對數列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質變之間的辯證關系在這里得到了充分的體現。
課后練習:
。1)判斷下列數列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4—(1/3)m;③an=(—1)n/3n;④aan=—2;⑤an=n;⑥an=(—1)n。
。2)課本練習1,2。
5、探究性問題
設計研究性學習的思考題。
提出問題:
芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠也無法超過在他前面慢慢爬行的烏龜,因為當阿基里斯到達烏龜的起跑點時,烏龜已經走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當阿基里斯追到O。1公里的地方,烏龜又向前跑了0.01公里。當阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里這樣一直追下去,阿基里斯能追上烏龜嗎?
這里是研究性學習內容,以學生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學內容,進一步提高了學生學習數列的極限的興趣。同時也為學生創(chuàng)設了課下交流與討論的情境,逐步培養(yǎng)學生相互合作、交流和討論的習慣,使學生感受到了數學來源于生活,又服務于生活的實質,逐步養(yǎng)成用數學的知識去解決生活中遇到的實際問題的習慣。
【高中數學教案】相關文章:
數學教案高中教學06-11
高中必修數學教案01-07
高中數學教案10-26
高中必修4數學教案03-13
高中數學教案09-28
高中數學教案[通用]06-22
高中數學教案【推薦】05-26
【集合】高中數學教案05-22
高中數學教案[優(yōu)]05-20
高中高二數學教案11-14