- 相關推薦
小學六年級數(shù)學《圓的面積》教案(通用10篇)
作為一名教學工作者,時常會需要準備好教案,教案有利于教學水平的提高,有助于教研活動的開展。那么應當如何寫教案呢?下面是小編為大家整理的小學六年級數(shù)學《圓的面積》教案,歡迎大家分享。
小學六年級數(shù)學《圓的面積》教案 1
教學內容:
義務教育課程標準實驗教科書第十一冊P69~71例1、例2。
教學目標:
1、認知目標:使學生理解圓面積的含義;掌握圓的面積公式,并能運用所學知識解決生活中的簡單問題。
2、過程與方法目標:經(jīng)歷圓的面積公式的推導過程,體驗實驗操作,邏輯推理的學習方法。
3、情感目標:引導學生進一步體會“轉化”的數(shù)學思想,初步了解極限思想;體驗發(fā)現(xiàn)新知識的快樂,增強學生的合作交流意識和能力,培養(yǎng)學生學習數(shù)學的興趣。
教學重點:
掌握圓的面積的計算公式,能夠正確地計算圓的面積。
教學難點:
理解圓的面積計算公式的推導。
教學準備:
相應課件;圓的面積演示教具
教學過程:
一、情境導入
出示場景——《馬兒的困惑》
師:同學們,你們知道馬兒吃草的大小是一個什么圖形呀?
生:是一個圓形。
師:那么,要想知道馬兒吃草的大小,就是求圓形的什么呢?
生:圓的面積。
師:今天我們就一起來學習圓的面積。(板書課題:圓的面積)
[設計意圖:通過“馬兒的困惑”這一場景,讓學生自己去發(fā)現(xiàn)問題,同時使學生感悟到今天要學習的內容與身邊的生活息息相關、無處不在,同時了解學習任務,激發(fā)學生學習的興趣。]
二、探究合作,推導圓面積公式
1、滲透“轉化”的數(shù)學思想和方法。
師:圓的面積怎樣計算呢?計算公式又是什么?你們想知道嗎?
我們先來回憶一下平行四邊形的面積是怎樣推導出來?
生:沿著平行四邊形的高切割成兩部分,把這兩部分拼成長方形師:哦,請看是這樣嗎?(教師演示)。
生:是的,平行四邊形的底等于長方形的長,平行四邊形的高等于長方形的寬,因為長方形的面積等于長乘寬,所以平行四邊形的面積等于底乘高。
師:同學們對原來的知識掌握得非常好。剛才我們是把一個圖形先切,然后拼,就轉化成別的圖形。這樣有什么好處呢?
生:這樣就把一個不懂的問題轉化成我們可以解決的問題。
師:對,這是我們在學習數(shù)學的過程當中的一種很好的方法。今天,我們就用這種方法把圓轉化成已學過的'圖形。
師:那圓能轉化成我們學過的什么圖形?你們想知道嗎?(想)
2、演示揭疑。
師:(邊說明邊演示)把這個圓平均分成16份,沿著直徑來切,變成兩個半圓,拼成一個近似的平行四邊形。
師:如果老師把這個圓平均分成32份,那又會拼成一個什么圖形?我們一起來看一看(師課件演示)。
師:大家想象一下,如果老師再繼續(xù)分下去,分的份數(shù)越多,每一份就會越小,拼成的圖形就會越接近于什么圖形?(長方形)
[設計意圖:通過這一環(huán)節(jié),滲透一種重要的數(shù)學思想,那就是轉化的思想,引導學生抽象概括出新的問題可以轉化成舊的知識,利用舊知識解決新的問題。并借助電腦課件的演示,生動形象地展示了化曲為直的剪拼過程。]
3、學生合作探究,推導公式。
(1)討論探究,出示提示語。
師:下面請同學們看老師給的三個問題,請你們四人一組,拿出課前準備的學具拼一拼,觀察、討論完成這三個問題
①轉化的過程中它們的(形狀)發(fā)生了變化,但是它們的(面積)不變?
、谵D化后長方形的長相當于圓的(周長的一半),寬相當于圓的(半徑)?
、勰隳軓挠嬎汩L方形的面積推導出計算圓的面積的公式嗎?嘗試用“因為……所以……”類似的關聯(lián)詞語。
師:你們明白要求了嗎?(明白)好,開始吧。
學生匯報結果,師隨機板書。
同學們經(jīng)過觀察,討論,尋找出圓的面積計算公式,真了不起。
(2)師:如果圓的半徑用r表示,那么圓周長的一半用字母怎么表示?
(3)揭示字母公式。
師:如果用S表示圓的面積,那么圓的面積計算公式就是:S=πr2
(4)齊讀公式,強調r2=r×r(表示兩個r相乘)。
從公式上看,計算圓的面積必須知道什么條件?在計算過程中應先算什么?
[設計意圖:通過小組合作、討論使學生進一步明確拼成的長方形與圓之間的對應關系,有效地突破了本課的難點。]
三、運用公式,解決問題
1.教學例1。
師:同學們,從這個公式我們可以看出,要求圓的面積,必須先知道什么?(出示例1)知道圓的半徑,讓學生根據(jù)圓的面積計算公式計算圓的面積。
預設:教師應加強巡視,發(fā)現(xiàn)問題及時指導,并提醒學生注意公式、單位使用是否正確。
2.如果我們知道一個圓形花壇的直徑是20m,我們該怎樣求它的面積呢?請大家動筆算一算這個圓形花壇的面積吧!
3.求下面各圓的面積。
[設計意圖:學生已經(jīng)掌握了圓面積的計算公式,可大膽放手讓學生嘗試解答,從而促進了理論與實踐的結合,培養(yǎng)了學生靈活運用所學知識解決實際問題的能力。]
3.教學例2。
師:(出示例2)這是一張光盤,這張光盤由內、外兩個圓構成。光盤的銀色部分是一個圓環(huán)。請同學們小聲地讀一讀題。開始!
師:怎樣求這個圓環(huán)的面積呢?大家商量商量,想想辦法吧!
師:找到解決問題的方法了嗎?
師:好的,就按同學們想到的方法算一算這個圓環(huán)的面積吧!
教師繼續(xù)對學困生加強巡視,如果還有問題的學生并給予指導。
[設計意圖:學生已經(jīng)掌握了圓面積的計算公式,掌握環(huán)形面積計算,教師可以引導學生分析理解,大膽放手讓學生嘗試解答,培養(yǎng)了學生運用所學知識解決實際問題的能力。]
四、課堂作業(yè)。
1、教材P69頁“做一做”第2小題。
2、判斷題
讓學生先判斷,并講一講錯誤的原因。
3、填空題
復習圓的半徑、直徑、周長、面積之間的相互關系。
4、教材P70頁練習十六第2小題。
5、完成課件練習(知道圓的周長求面積)
老師強調學生認真審題,并引導學生要求圓的面積必須知道哪一個條件(半徑),知道圓的周長就如何求出圓的面積,老師注意輔導中下學生。
五、課堂總結
師:同學們,通過這節(jié)課的學習,你有什么收獲?
六、布置作業(yè)
小學六年級數(shù)學《圓的面積》教案 2
教學目標
1.理解圓柱表面積的意義,掌握圓柱表面積的計算方法。
2.能正確地計算圓柱的表面積。
3會解決簡單的實際問題。
4.初步培養(yǎng)學生抽象的邏輯思維能力。
教學重點
理解并掌握圓柱表面積的計算方法,并能正確進行圓柱表面積的計算。
教學難點
能充分運用圓柱表面積的相關知識靈活的解決實際問題。
教學過程
一、復習舊知。
1、計算下面圓柱的側面積。
(1)底面周長2.5米,高0.6米。
(2)底面直徑4厘米,高10厘米。
(3)底面半徑1.5分米,高8分米。
2求出下面長方體、正方體的表面積。
(1)長方體的長為4厘米,寬為7厘米,高為9厘米。
(2)正方體的棱長為6分米。
3、討論說說長方體、正方體的表面積的意義及其表面積的計算方法。
學生甲:長方體、正方體的表面積指的是長方體、正方體的六個面的面積的總和。
學生乙:計算長方體的表面積時只要計算長方體相互對立的3個面的面積,3個面的面積相加再乘以2就是長方體的表面積。正方體的表面積是棱長乘以棱長再乘以6。
二、新課導入。
1、教師:以前我們學習了長方體、正方體的表面積的意義及其表面積的求法,那么圓柱體的表面積的計算和長方體、正方體的表面積的計算有什么區(qū)別和聯(lián)系呢?圓柱的表面積又是如何計算的呢?接下來我們一起來討論和探索這個問題。(板書:圓柱的表面積)
2、學生討論:你認為圓柱的表面積是指哪一部分?它由幾個面組成?
(1)學生分組討論。
(2)學生匯報討論結果。
3、反饋小節(jié):圓柱的表面積指的是圓柱的側面積和兩個底面積的總和,圓柱的表面積由一個側面機和兩個底面組成。(板書:圓柱的側面積+圓柱的兩個底面積=圓柱的表面積)
4、教師進行圓柱模型表面展開演示。
(1)學生說說展開的側面是什么圖形。
學生:圓柱展開的側面是一個長方形。
(2)學生說說長方形的長和寬與圓柱的底面周長和高有什么關系?
學生:長方體的長(或寬)等于圓柱的底面積,長方體的寬(或長)等于圓柱的高。
(3)圓柱的側面積是怎樣計算的?抽生回答進行復習整理。(板書:圓柱的側面積=圓柱的底面周長×圓柱的高)
(3)圓柱的底面積怎么計算?(復習底面積的計算方法)。
5、說說實際生活中有哪些圓柱體?哪些表面是完整的`,哪些表面是不完整的?
學生舉例:完整的圓柱有兩個底面,不完整的圓柱只有一個底面(如水桶)或者根本就沒有底面(如煙囪)。
教師:所以我們每個同學在計算圓柱的表面積時要特別認真,要特別注意這個圓柱到底有幾個底面。
三、新課教學。
1、例2一個圓柱的高是4.5分米,底面半徑2分米,它的表面積是多少?(課件演示)
2、學生嘗試練習,教師巡回檢查、指導。
3、反饋評價:
(1)側面積:2×2×3.14=56.52(平方分米)
(2)底面積:3.14×2×2=12.56(平方分米)
(3)表面積:56.52+12.56=81.64(平方分米)
答:它的表面積是81.64平方分米。
4、學生質疑。
5、教師強調答題過程的清楚完整和計算的正確。
6、教學小節(jié):在計算過程中你發(fā)現(xiàn)了什么?計算圓柱的表面積一般要分成幾步來計算呀?
四、反饋練習:試一試。
1、學生嘗試練習:要做一個沒有蓋的圓柱形鐵皮水桶,高50厘米,底面直徑為30厘米,至少需要多少鐵皮?(得數(shù)保留整數(shù))
2、學生交流練習結果(注意計算結果的要求)。
3、教師評議。
教師:在實際運用中四舍五入法和進一法有什么不同?
學生:計算使用材料的用量時為確保使用材料的充足通常都使用進一法,計算結果如果使用四舍五入法也許會出現(xiàn)使用材料不足的現(xiàn)象。
五、拓展練習
1、教師發(fā)給學生教具,學生分組進行數(shù)據(jù)測量。
2、學生自行計算所需的材料。
3、計算結果匯報。
教師:同學們的答案為什么會有不同?哪里出現(xiàn)偏差了?
學生甲:可能是數(shù)據(jù)的測量不準確。
學生乙:可能是計算出現(xiàn)錯誤。
教師:在實際運用中如果數(shù)據(jù)測量不準確或者計算出現(xiàn)錯誤,或許就會造成很大的經(jīng)濟損失,這種損失也許是不可估量的,但事實上它又是很容易避免的。所以我們每個同學都要養(yǎng)成認真、仔細的好習慣。
六、鞏固練習。
1、計算下面圖形的表面積(單位:厘米)(略)
2、計算下面各圓柱的表面積。
(1)底面周長是21.52厘米,高2.5分米。
(2)底面半徑0.6米,高2米。
(3)底面直徑10分米,高80厘米。
3、一個圓柱形的罐頭盒,底面直徑是16厘米,高是10厘米,它的表面積是多少厘米?
4、一個圓柱鐵桶(沒蓋),高是5分米,底面半徑是2分米,做一個這樣的鐵桶,至少需要多少鐵皮?(得數(shù)保留一位小數(shù))
小學六年級數(shù)學《圓的面積》教案 3
教學內容:
圓的面積。
教學目標:
1.通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2.激發(fā)學生參與整個課堂教學活動的學習興趣,培養(yǎng)學生的分析、觀察和概括能力,發(fā)展學生的空間觀念。
3.滲透轉化的數(shù)學思想和極限思想。
教學重點:
正確計算圓的面積。
教學難點:
圓面積公式的推導。
學情分析:
本課是在學生掌握了面積的含義及長方形、正方形等平面圖形面積的計算方法,認識了圓,會計算圓的周長的基礎上進行教學的,教學時要注意遵循學生的認識規(guī)律,重視學生獲取知識的思維過程,重視從學生的生活經(jīng)驗和已有的知識出發(fā)。
學法指導:
教學本課時,重點引導學生提出將圓割拼成已學過的圖形,組織學生動手操作,讓學生主動參與知識形成的過程,從而培養(yǎng)學生的創(chuàng)新意識、實踐能力,并發(fā)展學生的空間觀念。
教具準備:
多媒體課件,圓片。
學具準備:
把圓片分成十六等分,并按課本圖所示,剪拼并貼成近似長方形。
教學設計:
一、復習舊知,導入新課
1.前面我們學習了圓、圓的周長。如果圓的半徑用r表示,周長怎樣表示?(2πr)周長的一半怎樣表示?(πr)
2.課件:出示一塊圓形的桌布。如果要給這塊桌布的邊縫上花邊,是求什么?(圓形桌布的周長)
3.件:出示一塊圓形的鏡框。如果要鏡框配一塊玻璃,至少需要多大?是求什么?(圓的面積)誰能指出這個圓的面積?誰能概括一下什么是圓的面積?請同學們用手摸出學具圓的面積。
提問:如果圓的半徑是2分米,你能猜猜這塊玻璃到底有多大?(同學們紛紛地猜測,有的學生可能說這個圓面小于所在的正方形面積)
這塊圓形玻璃有多大,就是要求圓形的'面積,這節(jié)課我們一起來研究怎樣計算圓的面積。(板書課題:圓的面積)
二、動手操作,探索新知
1.回憶平行四邊形、三角形、梯形面積計算公式推導過程。
(1)以前我們學習了平行四邊形、三角形和梯形的面積計算公式。請同學們回想一下,這些圖形的面積計算公式是怎樣推導出來的?(學生回答,師用課件演示。)
(2)通過回憶這三種平面圖形面積計算公式的推導,你發(fā)現(xiàn)了什么?(發(fā)現(xiàn)這三種平面圖形都是轉化為學過的圖形來推導出它們的面積計算公式。)
(3)能不能把圓轉化為學過的圖形來推導出它的面積計算公式呢?那么同學們想一想,圓可能轉化為什么平面圖形來計算呢?
2.推導圓面積的計算公式。
(1)拿出已準備好的學具,說說你把圓剪拼成了什么圖形?
(2)學生小組討論。
看拼成的長方形與圓有什么聯(lián)系?
學生匯報討論結果。
(3)課件演示:請看大屏幕,把圓分成16等份,拼成了近似平行四邊形,再分成32等份,拼成近似的平行四邊形,再分成64等份,拼成近似長方形,你發(fā)現(xiàn)什么?(如果分的份數(shù)越多,每一份就會越細,拼成的圖形就會越接近于長方形。)
(4)你能根據(jù)長方形的面積計算公式推導出圓的面積計算公式嗎?小組討論一下。
生邊答師邊演示課件。
生答:因為拼成的長方形的面積與圓的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。
因為長方形的面積=長×寬
所以圓的面積=周長的一半×半徑
S=πr×rS=πr2師小結公式
S=πr2,讓學生小組內說說圓的面積是怎樣推導出來的?
(5)讀公式并理解記憶。
(6)要求圓的面積必須知道什么?(半徑)
3.利用公式計算。
(1)用新的方法算一算:剛才的玻璃到底有多大?看誰剛才猜得較接近。(學生計算并匯報)
(2)出示例3,學生嘗試練習,反饋評價。
提問:如果這道題告訴的不是圓的半徑,而是直徑,該怎樣解答?不計算,誰知道結果是多少嗎?
(3)完成第95頁做一做的第1題。
(4)看書質疑。
三、運用新知,解決問題
1.求下面各圓的面積,只列式不計算。(CAI課件出示)
2.測量一個圓形實物的直徑,計算它的周長及面積。
3.課件演示
用一根繩子把羊栓在木樁上,演示羊邊吃草邊走的情景。(生看完提問題并計算)(羊吃到草的面積即圓面積是多少?)
四、全課小結
這節(jié)課你自己運用了什么方法,學到了哪些知識?
五、布置作業(yè)
1.第97頁的第3題和第4題。
2.找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)
測量物、直徑(厘米)、半徑(厘米)、面積(平方厘米)
板書設計:
圓的面積
長方形的面積=長×寬
圓的面積=周長的一半×半徑
S=πr×r
S=πr2
小學六年級數(shù)學《圓的面積》教案 4
教學目的:
1.通過教學使學生建立圓面積的概念,理解圓面積計算公式的推導過程,掌握圓面積的計算公式。
2.能正確地應用圓面積計算公式進行圓面積的計算,并能解答有關圓的實際問題。
教學重點:
理解和掌握圓面積的計算公式的推導過程
教學難點:
圓面積計算公式的推導
教學過程:
一 、創(chuàng)設情境,提出問題
。 課件演示)用一根繩子把羊栓在木樁上,演示羊邊吃草邊走的情景。(生看完提問題)
生:
1、羊走一圈有多長?
2、羊最多能吃到多少草?
3、羊能吃到草的最大面積是多少?
二、引導探究,構建模型
A:啟發(fā)猜想
師:羊吃到草的'最大面積最大是圓形:
1、這個圓的面積有多大猜猜看;
2、試想圓的面積和哪些條件有關?
3、怎樣推導圓的面積公式?(生試說)
B:分組實驗,發(fā)現(xiàn)模型
學生分小組將平均分成16等分、32等分的圓放在桌上自由拼擺,拼成以前學過的平面圖形擺好后想一想:
1、你擺的是什么圖形?
2、你擺的圖形與圓的面積有什么關系?
3、圖形各部分相當于圓的什么?
4、你如何推導出圓的面積?
請小組長匯報拼擺的情況,鼓勵學生拼擺成不同的平面圖形(師課件展示動畫效果)可以拼擺成長方形、梯形、三角形、平行四邊形四種情況。
三、 應用知識,拓展思維
1、師:要求圓的面積必須知道什么?
2、運用公式計算面積
A、完成羊吃草的面積
B、完成課后“做一做”
C、一個圓的直徑是10厘米,它的面積是多少平方厘米?
D、找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)
測量物直徑(厘米)半徑(厘米)面積(平方厘米)
3、應用知識解決身邊的實際問題(知識應用)
下面是一個體育場的平面圖,請你算一算跑道的周長是多少米?長方形體育場的占地面積是多少平方米?學校要請師傅給體育場鋪草皮,已知每平方米的草皮是2.4元,學校一共要付多少錢才能完成?
四、歸納總結,完善認知
今天學了什么,這些知識我們是用什么方法學來的,你懂得了什么?
小學六年級數(shù)學《圓的面積》教案 5
教學目標:
1、在初步認識圓柱的基礎上理解圓柱的側面積和表面積的含義,掌握圓柱側面積和表面積的計算方法,會正確計算圓柱的側面積和表面積。
2、通過實踐操作,在學生理解圓柱側面積和表面的含義的同時,能解決一些有關實際生活的問題。
教學重點,難點:
掌握圓柱側面積和表面積的計算方法。
運用所學的知識解決簡單的實際問題。
教學過程:
一、引入新課:
前一節(jié)課我們已經(jīng)認識了一個新朋友——圓柱,誰能說說這位新朋友長什么樣子以及有什么特征嗎?
1.圓柱是由平面和曲面圍成的立體圖形。
2.圓柱各部分的名稱(兩個底面,側面,高)。
3.把圓柱的側面沿著它的一條高剪開得到一個長方形,這個長方形的`長等于圓柱的底面周長、寬等于圓柱的高。
同學們對圓柱已經(jīng)知道得這么多了,還想對它作進一步的了解嗎?今天我們就一起來研究怎樣求圓柱的表面積。
二、探究新知:
以前我們學過正方體、長方體的表面積,觀察一個長方體,我們是怎么求這個長方體的表面積的呢?(六個面的面積和就是它的表面積)
同學們想一想我們要求圓柱的表面積,那么圓柱的表面積指的是什么?
教師引導,學生討論結果:圓柱的側面積加上兩個底面的面積就是圓柱的表面積。
板書:(圓柱的表面積=圓柱的側面積+兩個底面的面積)
1.圓柱的側面積
(1)圓柱的側面積,顧名思義,也就是圓柱側面的面積。
(2)出示圓柱的展開圖:這個展開后的長方形的面積和圓柱的側面積有什么關系呢?
(學生觀察很容易看到這個長方形的面積等于圓柱的側面積)
(3)那么,圓柱的側面積應該怎樣計算呢?(引導學生根據(jù)展開后的長方形的長和寬與圓柱底面周長和高的關系,可以知道:圓柱的側面積=底面周長×高)
2.側面積練習:練習二第5題
學生審題,回答下面的問題:
這兩道題分別已知什么,求什么?
小結:要計算圓柱的側面積,必須知道圓柱底面周長和高這兩個條件,有時題里只給出直徑或半徑,底面周長這個條件可以通過計算得到,在解題前要注意看清題意再列式。
3.理解圓柱表面積的含義.
(1)讓學生把自己制作的圓柱模型展開,觀察一下,圓柱的表面由哪幾個部分組成?(通過操作,使學生認識到:圓柱的表面由上下兩個底面和側面組成。)
(2)圓柱的表面積是指圓柱表面的面積,也就是圓柱的側面積加上兩個底面的面積。
公式:圓柱的表面積=圓柱的側面積+底面積×2
4.嘗試練習。
(1)求下面各圓柱的側面積。
、俚酌嬷荛L2.5分米,高0.6分米。
、诘酌嬷睆8厘米,高12厘米。
(2)求下面各圓柱的表面積。
、俚酌娣e是40平方厘米,側面積是25平方厘米。
、诘酌姘霃绞2分米,高是5分米。
5.小結:
在計算圓柱形的表面積時,要根據(jù)給定的數(shù)據(jù)計算各部分的面積。(如:有時候給出的是底面半徑,有時是底面直徑。)
三、鞏固練習。
1.做第14頁“做一做”。(求表面積包括哪些部分?)
2.練習二第6,7題。
四、課后思考。
同學們想一想是不是所有的圓柱在計算表面積時都可以用
公式:圓柱的表面積=圓柱的側面積+底面積×2來計算呢?
小學六年級數(shù)學《圓的面積》教案 6
教學目標
1.使學生理解圓面積公式的推導過程,掌握求圓面積的方法并能正確計算;
2.培養(yǎng)學生動手操作的能力,啟發(fā)思維,開闊思路;
3.滲透初步的辯證唯物主義思想。
教學重點和難點
圓面積公式的推導方法。
教學過程設計
(一)復習準備
我們已經(jīng)學習了圓的認識和圓的周長,誰能說說圓周長、直徑和半徑三者之間的關系?
已知半徑,圓周長的一半怎么求?
(出示一個整圓)哪部分是圓的面積?(指名用手指一指。)
這節(jié)課我們一起來學習圓的面積怎么計算。
(板書課題:圓的面積)
(二)學習新課
1.我們以前學過的三角形、平行四邊形和梯形的面積公式,都是轉化成已知學過的圖形推導出來的,怎樣計算圓的面積呢?我們也要把圓轉化成已學過的圖形,然后推導出圓面積的計算公式。
決定圓的大小的是什么?(半徑)所以,分割圓時要保留這個數(shù)據(jù),沿半徑把圓分成若干等份。
展示曲變直的變化圖。
2.動手操作學具,推導圓面積公式。
為了研究方便,我們把圓等分成16份。圓周部分近似看作線段,其
用自己的學具(等分成16份的圓)拼擺成一個你熟悉的、學過的平面圖形。
思考:
(1)你擺的是什么圖形?
(2)所擺的圖形面積與圓面積有什么關系?
(3)圖形的各部分相當于圓的什么?
(4)你如何推導出圓的面積?
(學生開始動手擺,小組討論。)
指名發(fā)言。(在幻燈前邊說邊擺。)
、倨闯鲩L方形,學生敘述,老師板書:
、谶能不能拼出其它圖形?
學生可以拼出:
等等
剛才,我們用不同思路都能推導出圓面積的公式是:S=r2。這幾種思路的.共同特點都是將圓轉化成已學過的圖形,并根據(jù)轉化后的圖形與圓面積的關系推導出面積公式。
例1 一個圓的半徑是4厘米,它的面積是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面積是50.24平方厘米。
想一想;求圓面積S應知道什么?如果給d和C,又怎樣求圓面積?
(三)鞏固反饋
1.求下面各圓的面積。
r=2(單位:分米) d=6(單位:分米)
2.選擇題。
用2米長的繩子把小羊拴在草地上的木框上,羊吃到地上的草的最大面積是多少?
(1)3.1422=12.56(米)
(2)3.1422=12.56(平方米)
(3)3.1432=28.26(平方米)
3.思考題:
已知正方形的面積是18平方米,求圓的面積。(如圖)
課堂教學設計說明
1.使學生運用遷移的方法,把新知識轉化為舊知識,把圓轉化成已經(jīng)學過的圖形。
2.在面積公式推導過程中,老師介紹分割圓的方法,展示由曲變直的過程,然后引導學生動手操作,小組討論,從各個角度推導出圓面積公式。培養(yǎng)學生動手操作,口頭表達和邏輯思維的能力,滲透了極限和轉化思想。
3.安排了坡度適當、由易到難的練習題,使學生由淺入深地掌握了知識,形成了技能。同時,還注意培養(yǎng)學生邏輯推理的能力。
小學六年級數(shù)學《圓的面積》教案 7
設計說明
1.利用圓內知識間的內在聯(lián)系,解決實際問題。
學生在掌握了圓的面積計算公式的推導過程之后,能夠利用公式解決實際問題。教材中根據(jù)圓的周長求圓的面積,對學生來說,有一定的難度,學生要在已有的圓的周長知識的基礎上,求出圓的半徑,再利用公式求出圓的面積。讓學生體會到了知識間是環(huán)環(huán)相扣的,提高了學生利用所學知識解決實際問題的能力。
2.重視圖示的作用。
結合圖示來理解圓中量與量之間的關系,使抽象的條件直觀化,既降低了學習難度,又利于學生找到計算圓的面積所需要的條件,進而求出圓的面積。
課前準備
教師準備
PPT課件
學生準備
圓片,剪刀
教學過程
一、創(chuàng)設情境,激發(fā)興趣
師:南湖公園的草坪上安裝了許多自動噴水頭,噴射的距離為3米,噴水頭轉動一周形成的是什么圖形?(圓)
師:噴水頭轉動一周可以澆灌多大的面積呢?這個面積就是誰的面積?(圓的面積)
師:同學們,上節(jié)課我們學習了圓的面積計算公式的推導過程,今天這節(jié)課,我們繼續(xù)研究圓的面積。利用圓的面積計算公式來解決生活中的實際問題。[板書:圓的面積(二)]
設計意圖:創(chuàng)設問題情境,讓學生在生活中發(fā)現(xiàn)問題,激發(fā)學生探究新知的興趣,為新知的學習做好鋪墊。
二、探究新知,建構模型
1.課件演示自動旋轉噴灌裝置在灌溉農(nóng)田的生活情境,并引導學生討論“噴水頭轉動一周形成什么圖形?噴水頭轉動一周能澆灌多大面積的農(nóng)田?圓的面積是指哪一部分?”,結合提出的幾個問題,引導學生區(qū)分圓的周長和面積。
師:怎么求出澆灌的面積呢?(生匯報:根據(jù)S=πr2得出3.14×32=3.14×9=28.26m2,強調要先算“平方”)
教師小結:已知圓的半徑求圓的面積時,可以直接利用圓的面積計算公式進行計算。
2.課件出示教材16頁例題,認真讀題,想一想題中給出的已知條件有哪些。(羊圈的形狀是圓、羊圈的周長是125.6m)
(1)想一想,要求羊圈的面積,首先要知道圓的哪一部分?(半徑)
(2)該如何求出圓的半徑呢?同桌說一說。(出示課堂活動卡) (學生反饋:根據(jù)圓的周長計算公式可知周長除以圓周率再除以2就可以求出圓的半徑)
(3)根據(jù)這個解題思路讓學生獨立完成。[全班反饋:半徑:125.6÷3.14÷2=20(m) 面積:3.14×202=1256(m2)]
3.探究推導圓的面積計算公式的其他方法。
(1)引導學生觀察所拼成的圖形,想一想拼成的.三角形的底相當于圓的哪一部分,拼成的三角形的高相當于圓的哪一部分。(學生反饋:拼成的三角形的底相當于圓的周長,拼成的三角形的高相當于圓的半徑)
(2)茶杯墊片剪開后,雖然形狀變了,但剪開前后的面積并沒有改變。根據(jù)三角形的面積計算公式,推導出圓的面積計算公式。
圓的面積=三角形的面積=底×高÷2=2πr×r÷2=πr2
設計意圖:學生在具體情境中了解圓的面積的含義,體會計算圓的面積的必要性,激發(fā)研究圓的面積的興趣。引導學生探究不同條件下求圓的面積的方法,發(fā)展學生的發(fā)散思維和積極探究的能力。用拼三角形的方法探究圓的面積計算公式,再一次體現(xiàn)了“化曲為直”的數(shù)學思想。
小學六年級數(shù)學《圓的面積》教案 8
教學目標:
1、認識圓的面積,探索并掌握圓面積計算公式,能正確運用圓面積公式解決簡單的實際問題。
2、在探究圓面積計算公式的過程中,讓學生初步感受極限的思想,進一步體會轉化的數(shù)學思想和方法,培養(yǎng)學生的遷移能力,發(fā)展學生的空間觀念。
3、通過大膽猜想、動手操作等活動,激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生的合作意識和探究精神;通過應用,讓學生體會數(shù)學的應用價值,體驗數(shù)學與生活的密切聯(lián)系,同時滲透環(huán)保意識。
教學重點:
推導圓面積計算公式,運用圓面積計算公式解決實際問題。
教學難點:
理解圓的面積公式的推導過程。
教學準備:
課件、圓形白紙、剪刀。
教學過程:
一、創(chuàng)設情景,生成問題
1、出示主題情景圖:
、購膱D中你獲得哪些數(shù)學信息?
、谔釂枺骸斑@個圓形草坪的'占地面積是多少平方米?” “占地面積”指什么?誰能上來指一指?
2、認識圓的面積:實際生活中還有許多類似的問題,如一根圓柱形鋼材的橫截面面積、圓形體育場的占地面積等都是指的圓的面積。拿出自己手中的圓,指一指哪是這個圓的面積?
3、說一說:什么叫圓的面積?
4、揭示課題:今天我們就來研究圓的面積。
二、探索交流,解決問題
1、舊知回顧:
回顧以前學過的平面圖形面積公式的推導過程。(課件配合演示平行四邊形、三角形、梯形的轉化過程。)
指出:轉化的方法是我們學習數(shù)學新知識的一種很好而且很有用的思想和方法。轉化的目的是為了--將沒學過的圖形轉化成已學過的圖形。
2、思考:那么能不能把圓也轉化成已學過的圖形來計算它的面積呢?
3、操作探究:
。1)探究轉化的方法。
、偬岢鰧嶒炓螅航裉煳覀円黄饋碜鰝實驗,請同學讀讀實驗要求。
a.把圓分成若干(偶數(shù))等份并剪開。
b.想辦法拼成學過的圖形。
、趧邮謱嶒灒献魈骄。
、鄯纸M匯報,展示成果(分層展示學生研究成果)。
第一層次:展示不同的轉化圖形,如平行四邊形、長方形、三角形、梯形等?隙ㄍ瑢W們愛動腦筋,想出了多種不同的轉化方法。
第二層次:展示不同的等份數(shù)拼成不同的平行四邊形,感受極限的思想。
觀察不同等份數(shù)拼成的不同圖形,發(fā)現(xiàn)規(guī)律(課件配合演示,從將圓4等份、8等份……直到128等份,拼成的近似平行四邊形到幾乎拼成長方形,引導學生發(fā)現(xiàn)規(guī)律:隨著分的份數(shù)越多,每一份就越小,拼成的圖形也就越接近于長方形)。
。2)推導圓面積公式。
、俦容^轉化后的圖形與圓,你發(fā)現(xiàn)了什么?
既然圖形面積沒變,那能否根據(jù)學過的面積公式計算圓的面積呢?
、谔岢鲆螅献魈骄。
、廴嘟涣,根據(jù)學生敘述板書:
長方形面積=長×寬
圓的面積 =c2 ×r
=Лr×r
=Лr
4、小結:圓的面積與半徑的關系是 S =Лr
三、鞏固應用,內化提高
1、出示例1:讀一讀題中提供的信息,學生獨立完成。
說說你是怎樣想的?
2、出示例2:光盤的銀色部分是一個圓環(huán),內圓半徑是2厘米,外圓半徑是6厘米。圓環(huán)的面積是多少?
(1) 認真讀題,理解題意。
(2) 你認為怎樣解決這個問題?學生回答,教師板書:大圓面積-小圓面積或外圓面積-內圓面積
。3) 學生嘗試獨立計算
。4) 匯報解答過程及結果,集體評價
。5) 出示算法二:這種解答方法行不行?與前一種比較,哪一種簡單?
4、比較上面兩道題,要求圓面積,可以通過哪些什么條件去求?通常都回到哪個公式計算圓的面積?
5、完成68頁“做一做”;練習十五的1-4題
四、回顧整理,反思提升
今天我們學到了哪些新知識?你有哪些收獲?(引導學生從知識、學習方法兩個方面進行小結)
小學六年級數(shù)學《圓的面積》教案 9
教學目標:
1、通過練習,使學生進一步掌握圓的面積公式,能正確計算圓的面積,并能應用公式解決相關的簡單實際問題。
2、進一步培養(yǎng)學生運用已有知識解決新問題的能力,體驗圓形與生活的聯(lián)系,感受平面圖形的學習價值,提高數(shù)學學習興趣和學好數(shù)學的自信心。
教學重點:
進一步掌握圓的面積公式,能正確計算圓的面積
教學難點:
能正確計算圓的面積,并能應用公式解決相關的簡單實際問題
教學流程:
一、基本練習:
1.計算下面各圓的面積。r=4分米d=10厘米r=6米d=14米
2、引入談話。師:今天我們繼續(xù)學習圓的面積計算。
二、綜合練習
1、完成練習十九第2題。要求:“鐵餅投擲圈的面積比鉛球投擲圈的面積大多少平方米?”首先要知道什么?根據(jù)直徑怎樣求出圓的面積?
2.完成練習十九第3題。根據(jù)圓的周長怎樣求出圓的半徑呢?
3、完成練習十九第4題。要求圓桌面面積必須知道什么?根據(jù)哪個求圓桌面的半徑?
4、完成練習十九的第5題。師追問:圓的面積和周長是怎樣算的.?分別指的是什么:
意義上有什么不同?
三、課堂總結
師:生活中有很多東西的形狀是圓形的,有時需要計算它的面積或周長,誰能說說在實際運用中需要注意什么?
小學六年級數(shù)學《圓的面積》教案 10
教學目標
1、使學生理解圓的面積的含義.經(jīng)歷體驗圓的面積公式的推導過程,理解和掌握圓的面積公式.
2、使學生能夠正確地計算圓的面積,培養(yǎng)學生解決簡單的實際問題的能力,滲透類比、極限的思想。
3、通過圓的面積公式推導過程,培養(yǎng)學生的合作精神和創(chuàng)新意識,培養(yǎng)觀察、猜想、驗證的實驗方法與態(tài)度。
教學重點
圓面積的公式推導的過程。
教學難點
理解圓經(jīng)過無數(shù)等分剪拼后可以拼成一個近似的.長方形。并且發(fā)現(xiàn)拼成的長方形的長相當于圓周長的一半。
教具、學具準備
有關圓面積的課件,彩色圓形紙片(每小組1個),剪刀(每組2把).學生每人準備一個圓形物品。
教學過程
一、創(chuàng)設情境,提出問題
【課件演示】花園里新建了一個圓形花壇,為了讓花壇更漂亮,管理員叔叔打算給花壇鋪上草坪,需要多少平方米的草坪呢?這實際上是要解決什么數(shù)學問題?
揭示課題:圓的面積
二、充分感知,理解圓的面積的意義。
提問:什么叫圓的面積呢?請大家拿出準備好的圓形紙片,用你喜歡的方式感受一下圓的面積,告訴大家圓的面積指的是什么?
課件顯示:圓所占平面的大小叫做圓的面積。
你認為圓面積的大小和什么有關?
三、自主探究,合作交流。
1、引導轉化:
回憶學過的一些平面圖形的面積的推導過程,這些圖形面積公式的推導過程有什么共同點?那么能不能把圓也轉化成學過的平面圖形來推導面積計算公式?
2、動手嘗試探索。
(1)分小組動手操作,剪一剪,拼一拼,看能拼成什么圖形?
(2)展示交流并介紹:你拼成了什么圖形?在拼的過程中你發(fā)現(xiàn)了什么?
如果我們再繼續(xù)等分下去,拼成的圖形會怎么樣?
小結:隨著等分的份數(shù)無限增加,可以把圓剪拼成一個近似的長方形。
你能否根據(jù)圓與剪拼成的長方形之間的關系想出圓的面積公式?
3、學生合作探究,推導公式
【小學六年級數(shù)學《圓的面積》教案】相關文章:
小學數(shù)學《圓的面積》教案02-23
小學數(shù)學圓的面積的教案04-18
數(shù)學圓的面積教案02-14
圓的面積的數(shù)學教案01-21
小學數(shù)學《圓的面積》教案14篇02-24
數(shù)學圓的面積教案15篇02-14
《圓的面積》教案04-25