- 相關(guān)推薦
高二數(shù)學(xué)教學(xué)計劃優(yōu)秀
光陰的迅速,一眨眼就過去了,我們的工作又邁入新的階段,我們要好好計劃今后的學(xué)習(xí),制定一份計劃了。什么樣的計劃才是有效的呢?下面是小編為大家收集的高二數(shù)學(xué)教學(xué)計劃優(yōu)秀,歡迎大家分享。
高二數(shù)學(xué)教學(xué)計劃優(yōu)秀1
一、指導(dǎo)思想
根據(jù)湖北省的新課改教學(xué)實施指導(dǎo)意見,結(jié)合我們學(xué)校的實際教學(xué)情況,發(fā)揮備課組的集體力量,全力以赴的完成本學(xué)期的教學(xué)任務(wù)。同時加強(qiáng)對新課改理念的學(xué)習(xí),相互協(xié)作,積極面對新課改的要求。
二、工作重點
認(rèn)真落實組里每位老師的課堂常規(guī)教學(xué)任務(wù),努力加強(qiáng)老師的課外教學(xué)科研工作;積極學(xué)習(xí)新課改的理論知識,認(rèn)真研究新教材的教法,做一個教學(xué)科研全方位的教師;同時發(fā)揮備課組全體成員的.集體力量,積極研討新教材的教學(xué)內(nèi)容,全力提升高二年級的數(shù)學(xué)水平,縮小和其它學(xué)校的差距。
三、具體措施
(1)落實好組里每位老師的兩節(jié)公開課的任務(wù),按照先議教案,再聽課堂,最后評價的程序嚴(yán)格落實到位。
。2)充分利用每個星期二下午的集體備課時間,商討教學(xué)中存在的問題,探究新教材的教法。同時爭取機(jī)會出去學(xué)習(xí)教改名校的數(shù)學(xué)學(xué)科課改教學(xué)的經(jīng)驗。
。3)做好每一次階段性的考試工作,考前認(rèn)真準(zhǔn)備,閱卷客觀公正,客觀評價教學(xué)質(zhì)量。
(4)分班落實數(shù)學(xué)學(xué)科的培優(yōu)補(bǔ)差工作,尤其是文科班數(shù)學(xué)的提升。
(5)準(zhǔn)備參加5月份的全國高中數(shù)學(xué)聯(lián)賽的活動,積極安排年輕老師參加數(shù)學(xué)教學(xué)競賽工作。
四、教學(xué)進(jìn)度
(1)2,3月份,文科完成選修1—1和選修3—1,理科完成選修2—1和3—1的教學(xué)任務(wù),建議把選修3—1的《數(shù)學(xué)史選講》參插講。
。2)4月份,理科完成選修2—2,文科完成選修4—5。
(3)5月份,理科完成選修4—1,文科完成選修4—5。
。4)6月份,理科完成選修4—4,文科開始期末考試的復(fù)習(xí)。
高二數(shù)學(xué)教學(xué)計劃優(yōu)秀2
一、學(xué)情分析:
本學(xué)期我負(fù)責(zé)的是1班和6班的數(shù)學(xué)教學(xué)工作,這兩個班級共有學(xué)生78人。6班學(xué)習(xí)數(shù)學(xué)的氣氛較濃,但由于高一函數(shù)部分基礎(chǔ)特別差,對高二乃至整個高中的數(shù)學(xué)學(xué)習(xí)有很大的影響,數(shù)學(xué)成績尖子生多或少,但若能雜實復(fù)習(xí)好函數(shù)部分,加上學(xué)生又很努力,將來前途無量。若能好好的引導(dǎo),進(jìn)一步培養(yǎng)他們的學(xué)習(xí)興趣。
二、教材分析:
1、不等式的主要內(nèi)容是:不等式性質(zhì)、不等式證明、不等式解法。不等式性質(zhì)是基礎(chǔ),不等式證明是在其基礎(chǔ)上進(jìn)行的;不等式的解法是在這一基礎(chǔ)上、依據(jù)不等式的性及同解變形來完成的。不等式在整個高中數(shù)學(xué)中是一個重要的工具,是培養(yǎng)運算能力、邏輯思維能力的強(qiáng)有力載體。
2、直線是最簡單的幾圖形,是學(xué)習(xí)圓錐曲線、導(dǎo)數(shù)和微分等知識的的基礎(chǔ)。,是直線方程的一個直接應(yīng)用。主要內(nèi)容有:直線方程的幾種形式,線性規(guī)劃的初步知識,兩直線的位置關(guān)系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數(shù)形結(jié)合解析幾何相互為用思想的載體。
3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并通過分析標(biāo)準(zhǔn)方程研究它們的性質(zhì)。
三、教學(xué)的重點與難點:
。ㄒ唬┲攸c
1、不等式的證明、解法。
2、直線的斜率公式,直線方程的幾種形式,兩直線的'位置關(guān)系,圓的方程。
3、橢圓、雙曲線、拋物線的定義,標(biāo)準(zhǔn)方程,簡單幾何性質(zhì)。
。ǘ╇y點
1、含絕對值不等式的解法,不等式的證明。
2、到角公式,點到直線距離公式的推導(dǎo),簡單線性規(guī)劃的問題的解法。
3、用坐標(biāo)法研究幾何問題,求曲線方程的一般方法。
四、教學(xué)目標(biāo):
。ㄒ唬┣橐饽繕(biāo)
。1)通過分析問題的方法的教學(xué)、通過不等式的一題多解、多題一解、不等式的一題多證,培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
(2)提供生活背景,使學(xué)生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。
(3)在探究不等式的性質(zhì)、圓錐曲線的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識
(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。
。5)還時空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
。6)讓學(xué)生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程的幻妙多姿
。ǘ┠芰σ
1、培養(yǎng)學(xué)生記憶能力。
。1)在對不等式的性質(zhì)、平均不等式及思維方法與邏輯模式的學(xué)習(xí)中,進(jìn)一步培養(yǎng)記憶能力。做到記憶準(zhǔn)確、持久,用時再現(xiàn)得迅速、正確。
。2)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。
(3)通過揭示解析幾何有關(guān)概念、公式和圖形直觀值見的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學(xué)生的運算能力。
。1)通過解不等式及不等式組的訓(xùn)練,培養(yǎng)學(xué)生的運算能力。
。2)加強(qiáng)對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運算能力。 (3)通過解析法的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性能力。 (4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。 (5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算能力。
3、培養(yǎng)學(xué)生的思維能力。
。1)通過含參不等式的求解,培養(yǎng)學(xué)生思維的周密性及思維的邏輯性。
。2)通過解析幾何與不等式的一題多解、多題一解、通過不等式的一題多證,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。
。3)通過不等式引伸、推廣,培養(yǎng)學(xué)生的創(chuàng)造性思維。
。4)加強(qiáng)知識的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的能力。
(5)通過解析幾何的概念教學(xué),培養(yǎng)學(xué)生的正向思維與逆向思維的能力。
。6)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學(xué)生掌握轉(zhuǎn)化思想方法。
4、培養(yǎng)學(xué)生的觀察能力。
。1)在比較鑒別中,提高觀察的準(zhǔn)確性和完整性。
(2)通過對個性特征的分析研究,提高觀察的深刻性。
。ㄈ┲R要求
1、掌握不等式的概念、性質(zhì)及證明不等式的方法,不等式的解法;
2、通過直線與圓的教學(xué),使學(xué)生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關(guān)系,掌握簡單線性規(guī)劃問題,掌握曲線方程、圓的概念。
3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質(zhì)。
五、教學(xué)措施:
1、積極參加與組織集體備課,共同研究,努力提高授課質(zhì)量
2、堅持向同行聽課,取人所長,補(bǔ)己之短。相互研究,共同進(jìn)步。
3、堅持學(xué)法研討,加強(qiáng)個別輔導(dǎo)(差生與優(yōu)生),提高全體學(xué)生的整體數(shù)學(xué)水平,培育尖子學(xué)生。
4、加強(qiáng)數(shù)學(xué)研究課的教學(xué)研究指導(dǎo),培養(yǎng)學(xué)識的動手能力。
5、教學(xué)中要傳授知識與培育能力相結(jié)合,充分調(diào)動學(xué)生學(xué)習(xí)的主動性,培育學(xué)生的概括能力,是學(xué)生掌握數(shù)學(xué)基本方法、基本技能。
6、堅持與高三聯(lián)系,切實面向高考,以五大數(shù)學(xué)思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān)。
7、加強(qiáng)教育教學(xué)研究,堅持學(xué)生主體性原則,堅持循序漸進(jìn)原則,堅持啟發(fā)性原則。研究并采用以“發(fā)現(xiàn)式教學(xué)模式”為主的教學(xué)方法,全面提高教學(xué)質(zhì)量。
六、課時安排:
本學(xué)期共81課時
1、不等式18課時
2、直線與圓的方程25課時
3、圓錐曲線20課時
4、研究課18課時。
高二數(shù)學(xué)教學(xué)計劃優(yōu)秀3
一、指導(dǎo)思想:
在學(xué)校教育工作意見指導(dǎo)下,嚴(yán)格執(zhí)行學(xué)校各教育教育制度和要求,加強(qiáng)數(shù)學(xué)教育研究,提高全組教師教育、教育研究水平,明確任務(wù),團(tuán)結(jié)合作,圓滿完成教育教育研究任務(wù)。具體任務(wù)如下:
1、讓學(xué)生獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),理解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體驗其中包含的數(shù)學(xué)思想和方法,以及其在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探索活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷史。
2、提高學(xué)生空間想象力、抽象摘要、推理論證、運算解決、數(shù)據(jù)處理等基本能力。
3、提高學(xué)生提出、分析和解決數(shù)學(xué)問題(包括簡單的實際問題)的能力,提高數(shù)學(xué)表現(xiàn)和交流的能力,發(fā)展獨立獲得數(shù)學(xué)知識的能力。
4、發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,努力思考和判斷現(xiàn)實世界包含的數(shù)學(xué)模式。
5、提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,確立學(xué)習(xí)數(shù)學(xué)的自信,形成堅持不懈的鉆研精神和科學(xué)態(tài)度。
6、使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思考習(xí)慣,崇尚數(shù)學(xué)的理性精神,體驗數(shù)學(xué)的美學(xué)意義,進(jìn)一步確立辯證唯物主義和歷史唯物主義世界觀。
二、教法分析:
1、選擇與內(nèi)容密切相關(guān)、典型、豐富、學(xué)生熟悉的素材,用生動活潑的語言創(chuàng)造數(shù)學(xué)概念和結(jié)論、數(shù)學(xué)思想和方法、數(shù)學(xué)應(yīng)用的學(xué)習(xí)情況,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引起學(xué)生看到最后的沖動,達(dá)到培養(yǎng)興趣的.目的。
2、通過觀察、思考、探索等欄目,引起學(xué)生的思考和探索活動,切實改善學(xué)生的學(xué)習(xí)方式。
3、在教育中強(qiáng)調(diào)類比、普及、特殊化、歸化等數(shù)學(xué)思想方法,盡量養(yǎng)成邏輯思維的習(xí)慣。
三、教育措施:
1、全體老師誠實團(tuán)結(jié),相互關(guān)心,相互支持,努力使我們的高二數(shù)學(xué)組成為充滿活力的優(yōu)秀集團(tuán);ハ嗌险n,取長補(bǔ)短,完善自己,加強(qiáng)形式、時間、場所的交流。在日常工作中,保持和優(yōu)化個人特色,實現(xiàn)資源共享,同類班級相關(guān)工作基本統(tǒng)一。
2、認(rèn)真執(zhí)行,做好集體準(zhǔn)備課程。每周四上午三四節(jié)集體備課,認(rèn)真分析教材內(nèi)容,研討其中的重點、難點、教學(xué)方法等。
3、詳細(xì)規(guī)劃,保證練習(xí)質(zhì)量。在教育中充分利用資料,要求學(xué)生根據(jù)教育進(jìn)度完成相應(yīng)的練習(xí)題,每周以內(nèi)容滾動式制作周練試卷,老師必須整理,存在的普遍問題必須安排時間評價,成績在星期四之前自己輸入年級計算機(jī)。
4、抓住第二課,穩(wěn)定數(shù)學(xué)優(yōu)秀學(xué)生,培養(yǎng)數(shù)學(xué)能力興趣。各班培養(yǎng)好本班優(yōu)生,注意激發(fā)學(xué)員學(xué)習(xí)興趣,隨時注意學(xué)員學(xué)習(xí)方法輔導(dǎo)。
5、加強(qiáng)指導(dǎo)工作。對于數(shù)學(xué)學(xué)習(xí)困難的學(xué)生來說,教師的下班指導(dǎo)非常重要。在教師教育中,要盡快把握班級學(xué)生的數(shù)學(xué)學(xué)習(xí)狀況,有目的地進(jìn)行指導(dǎo)工作,注意班級優(yōu)生層,不能忽視班級困難的學(xué)生。
高二數(shù)學(xué)教學(xué)計劃優(yōu)秀4
本章是高考命題的主體內(nèi)容之一,應(yīng)切實進(jìn)行全面、深入地復(fù)習(xí),并在此基礎(chǔ)上,突出解決下述幾個問題:(1)等差、等比數(shù)列的證明須用定義證明,值得注意的是,若給出一個數(shù)列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 。(2)數(shù)列計算是本章的中心內(nèi)容,利用等差數(shù)列和等比數(shù)列的通項公式、前 項和公式及其性質(zhì)熟練地進(jìn)行計算,是高考命題重點考查的內(nèi)容。(3)解答有關(guān)數(shù)列問題時,經(jīng)常要運用各種數(shù)學(xué)思想。善于使用各種數(shù)學(xué)思想解答數(shù)列題,是我們復(fù)習(xí)應(yīng)達(dá)到的目標(biāo)。 ①函數(shù)思想:等差等比數(shù)列的通項公式求和公式都可以看作是 的函數(shù),所以等差等比數(shù)列的某些問題可以化為函數(shù)問題求解。
②分類討論思想:用等比數(shù)列求和公式應(yīng)分為 及 ;已知 求 時,也要進(jìn)行分類;
③整體思想:在解數(shù)列問題時,應(yīng)注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解。
。4)在解答有關(guān)的數(shù)列應(yīng)用題時,要認(rèn)真地進(jìn)行分析,將實際問題抽象化,轉(zhuǎn)化為數(shù)學(xué)問題,再利用有關(guān)數(shù)列知識和方法來解決。解答此類應(yīng)用題是數(shù)學(xué)能力的綜合運用,決不是簡單地模仿和套用所能完成的。特別注意與年份有關(guān)的等比數(shù)列的第幾項不要弄錯。
一、基本概念:
1、 數(shù)列的定義及表示方法:
2、 數(shù)列的項與項數(shù):
3、 有窮數(shù)列與無窮數(shù)列:
4、 遞增(減)、擺動、循環(huán)數(shù)列:
5、 數(shù)列的通項公式an:
6、 數(shù)列的前n項和公式Sn:
7、 等差數(shù)列、公差d、等差數(shù)列的結(jié)構(gòu):
8、 等比數(shù)列、公比q、等比數(shù)列的結(jié)構(gòu):
二、基本公式:
9、一般數(shù)列的通項an與前n項和Sn的關(guān)系:an=
10、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當(dāng)d0時,an是關(guān)于n的一次式;當(dāng)d=0時,an是一個常數(shù)。
11、等差數(shù)列的`前n項和公式:Sn= Sn= Sn=
當(dāng)d0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當(dāng)d=0時(a10),Sn=na1是關(guān)于n的正比例式。
12、等比數(shù)列的通項公式: an= a1 qn-1 an= ak qn-k
。ㄆ渲衋1為首項、ak為已知的第k項,an0)
13、等比數(shù)列的前n項和公式:當(dāng)q=1時,Sn=n a1 (是關(guān)于n的正比例式);
當(dāng)q1時,Sn= Sn=
三、有關(guān)等差、等比數(shù)列的結(jié)論
14、等差數(shù)列的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等差數(shù)列。
15、等差數(shù)列中,若m+n=p+q,則
16、等比數(shù)列中,若m+n=p+q,則
17、等比數(shù)列的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等比數(shù)列。
18、兩個等差數(shù)列與的和差的數(shù)列、仍為等差數(shù)列。
19、兩個等比數(shù)列與的積、商、倒數(shù)組成的數(shù)列
、 、 仍為等比數(shù)列。
20、等差數(shù)列的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。
21、等比數(shù)列的任意等距離的項構(gòu)成的數(shù)列仍為等比數(shù)列。
22、三個數(shù)成等差的設(shè)法:a-d,a,a+d;四個數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d
23、三個數(shù)成等比的設(shè)法:a/q,a,aq;
四個數(shù)成等比的錯誤設(shè)法:a/q3,a/q,aq,aq3
24、為等差數(shù)列,則 (c0)是等比數(shù)列。
25、(bn0)是等比數(shù)列,則 (c0且c 1) 是等差數(shù)列。
四、數(shù)列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關(guān)鍵是找數(shù)列的通項結(jié)構(gòu)。
26、分組法求數(shù)列的和:如an=2n+3n
27、錯位相減法求和:如an=(2n-1)2n
28、裂項法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求數(shù)列的最大、最小項的方法:
、 an+1-an= 如an= -2n2+29n-3
② an=f(n) 研究函數(shù)f(n)的增減性
31、在等差數(shù)列 中,有關(guān)Sn 的最值問題常用鄰項變號法求解:
。1)當(dāng) 0時,滿足 的項數(shù)m使得 取最大值。
(2)當(dāng) 0時,滿足 的項數(shù)m使得 取最小值。
在解含絕對值的數(shù)列最值問題時,注意轉(zhuǎn)化思想的應(yīng)用。
【高二數(shù)學(xué)教學(xué)計劃優(yōu)秀】相關(guān)文章:
高二數(shù)學(xué)春季教學(xué)計劃10-17
高二數(shù)學(xué)下冊的教學(xué)計劃10-23
高二數(shù)學(xué)個人教學(xué)計劃02-15