- 相關(guān)推薦
考研數(shù)學(xué) 注重線代知識(shí)點(diǎn)間的銜接
中國大學(xué)網(wǎng)考研頻道>>考研數(shù)學(xué)線性代數(shù)從內(nèi)容上看縱橫交錯(cuò),前后聯(lián)系緊密,環(huán)環(huán)相扣,相互滲透,因此解題方法靈活多變,根據(jù)考研專家多年來對(duì)考研數(shù)學(xué)命題的分析發(fā)現(xiàn),線性代數(shù)的命題重點(diǎn),除了對(duì)基礎(chǔ)知識(shí)的注重外,還偏向于知識(shí)點(diǎn)的銜接與轉(zhuǎn)換。舉例來說,設(shè)A是m×n矩陣,B是n×s矩陣,且AB=0,那么用分塊矩陣可知B的列向量都是齊次方程組Ax=0的解,再根據(jù)基礎(chǔ)解系的理論以及矩陣的秩與向量組秩的關(guān)系,可以有r(B)≤n-r(A)即r(A)+r(B)≤n,進(jìn)而可求矩陣A或B中的一些參數(shù)。
再如,若A是n階矩陣可以相似對(duì)角化,那么,用分塊矩陣處理P-1AP=∧可知A有n個(gè)線性無關(guān)的特征向量,P就是由A的線性無關(guān)的特征向量所構(gòu)成,再由特征向量與基礎(chǔ)解系間的聯(lián)系可知此時(shí)若λi是ni重特征值,則齊次方程組(λiE-A)x=0的基礎(chǔ)解系由ni個(gè)解向量組成,進(jìn)而可知秩r(λiE-A)=n-ni,那么,如果A不能相似對(duì)角化,則A的特征值必有重根且有特征值λi使秩r(λiE-A)<n-ni,若A是實(shí)對(duì)稱矩陣,則因A必能相似對(duì)角化而知對(duì)每個(gè)特征值λi必有r(λiE-A)=n-ni,此時(shí)還可以利用正交性通過正交矩陣來實(shí)現(xiàn)相似對(duì)角化。
又比如,對(duì)于n階行列式我們知道:若|A|=0,則Ax=0必有非零解,而Ax=b沒有惟一解(可能有無窮多解,也可能無解),而當(dāng)|A|≠0時(shí),可用克萊姆法則求Ax=b的惟一解;可用|A|證明矩陣A是否可逆,并在可逆時(shí)通過伴隨矩陣來求A-1;對(duì)于n個(gè)n維向量α1,α2,……αn可以利用行列式|A|=|α1α2……αn|是否為零來判斷向量組的線性相關(guān)性;矩陣A的秩r(A)是用A中非零子式的最高階數(shù)來定義的,若r(A)<r,則A中r階子式全為0;求矩陣A的特征值,可以通過計(jì)算行列式|λE-A|,若λ=λ0是A的特征值,則行列式|λ0E-A|=0;判斷二次型xTAx的正定性,可以用順序主子式全大于零。
凡此種種,正是因?yàn)榫性代數(shù)各知識(shí)點(diǎn)之間有著千絲萬縷的聯(lián)系,代數(shù)題的綜合性與靈活性就較大,同學(xué)們整理時(shí)要注重串聯(lián)、銜接與轉(zhuǎn)換。復(fù)習(xí)時(shí)應(yīng)當(dāng)常問自己做得對(duì)不對(duì)?再問做得好不好?只有不斷地歸納總結(jié),努力搞清內(nèi)在聯(lián)系,使所學(xué)知識(shí)融會(huì)貫通,接口與切入點(diǎn)多了,熟悉了,思路自然就開闊了。
http://www.szmdbiao.com/daoyan/【考研數(shù)學(xué) 注重線代知識(shí)點(diǎn)間的銜接】相關(guān)文章:
考研數(shù)學(xué)復(fù)習(xí)重要知識(shí)點(diǎn)11-20
把握知識(shí)點(diǎn)注重實(shí)踐性03-03
考研數(shù)學(xué)心得12-28
幼小銜接數(shù)學(xué)教案12-14
幼小銜接數(shù)學(xué)教案01-07
幼小銜接數(shù)學(xué)教案04-02
考研政治社會(huì)歷史發(fā)展的動(dòng)力知識(shí)點(diǎn)04-02
數(shù)學(xué)幼小銜接方案(精選18篇)07-13