代數(shù)式知識點(diǎn)
一、重要概念
分類:
1.代數(shù)式與有理式
用運(yùn)算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)
的一個數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。
沒有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。
有除法運(yùn)算并且除式中含有字母的有理式叫做分式。
3.單項(xiàng)式與多項(xiàng)式
沒有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積包括單獨(dú)的一個數(shù)或字母)
幾個單項(xiàng)式的和,叫做多項(xiàng)式。
說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。②進(jìn)行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如,=x,=│x│等。
4.系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看
5.同類項(xiàng)及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
6.根式
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開方運(yùn)算的'代數(shù)式叫做無理式。
注意:①從外形上判斷;②區(qū)別:、是根式,但不是無理式(是無理數(shù))。
7.算術(shù)平方根
、耪龜(shù)a的正的平方根([a與“平方根”的區(qū)別]);
、扑阈g(shù)平方根與絕對值
①聯(lián)系:都是非負(fù)數(shù),=│a│
、趨^(qū)別:│a│中,a為一切實(shí)數(shù);中,a為非負(fù)數(shù)。
8.同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。
把分母中的根號劃去叫做分母有理化。
9.指數(shù)
、(冪,乘方運(yùn)算)
、賏0時,②a0(n是偶數(shù)),0(n是奇數(shù))
、屏阒笖(shù):=1(a0)
負(fù)整指數(shù):=1/(a0,p是正整數(shù))
二、運(yùn)算定律、性質(zhì)、法則
1.分式的加、減、乘、除、乘方、開方法則
2.分式的性質(zhì)
⑴基本性質(zhì):=(m0)
、品柗▌t:
⑶繁分式:①定義;②化簡方法(兩種)
3.整式運(yùn)算法則(去括號、添括號法則)
4.冪的運(yùn)算性質(zhì):①②③=;④=;⑤
技巧:
5.乘法法則:⑴單⑵單⑶多多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(ab)=
7.除法法則:⑴單⑵多單。
8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。
9.算術(shù)根的性質(zhì):=;;(a0);(a0)(正用、逆用)
10.根式運(yùn)算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A.;B.;C..
11.科學(xué)記數(shù)法:(110,n是整數(shù)