中文国产日韩欧美视频,午夜精品999,色综合天天综合网国产成人网,色综合视频一区二区观看,国产高清在线精品,伊人色播,色综合久久天天综合观看

數(shù)列公式

時間:2024-03-12 18:25:41 好文 我要投稿

數(shù)列公式大全【優(yōu)秀】

數(shù)列公式大全1

  數(shù)列的基本概念 等差數(shù)列

  (1)數(shù)列的通項公式an=f(n)

  (2)數(shù)列的遞推公式

  (3)數(shù)列的通項公式與前n項和的關系

  an+1-an=d

  an=a1+(n-1)d

  a,A,b成等差 2A=a+b

  m+n=k+l am+an=ak+al

  等比數(shù)列 常用求和公式

  an=a1qn_1

  a,G,b成等比 G2=ab

  m+n=k+l aman=akal

  不等式

  不等式的基本性質 重要不等式

  a>b b

  a>b,b>c a>c

  a>b a+c>b+c

  a+b>c a>c-b

  a>b,c>d a+c>b+d

  a>b,c>0 ac>bc

  a>b,c<0 ac

  a>b>0,c>d>0 ac

  a>b>0 dn>bn(n∈Z,n>1)

  a>b>0 > (n∈Z,n>1)

  (a-b)2≥0

  a,b∈R a2+b2≥2ab

  |a|-|b|≤|a±b|≤|a|+|b|

  證明不等式的基本方法

  比較法

  (1)要證明不等式a>b(或a

  a-b>0(或a-b<0=即可

  (2)若b>0,要證a>b,只需證明 ,

  要證a

  綜合法 綜合法就是從已知或已證明過的.不等式出發(fā),根據(jù)不等式的性質推導出欲證的不等式(由因導果)的方法。

  分析法 分析法是從尋求結論成立的充分條件入手,逐步尋求所需條件成立的充分條件,直至所需的條件已知正確時為止,明顯地表現(xiàn)出“持果索因”

數(shù)列公式大全2

  一、知識與技能

  1.了解公差的概念,明確一個數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個數(shù)列是等差數(shù)列;

  2.正確認識使用等差數(shù)列的各種表示法,能靈活運用通項公式求等差數(shù)列的首項、公差、項數(shù)、指定的項.

  二、過程與方法

  1.通過對等差數(shù)列通項公式的推導培養(yǎng)學生:的觀察力及歸納推理能力;

  2.通過等差數(shù)列變形公式的教學培養(yǎng)學生:思維的深刻性和靈活性.

  三、情感態(tài)度與價值觀

  通過等差數(shù)列概念的歸納概括,培養(yǎng)學生:的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識.

  教學過程

  導入新課

  師:上兩節(jié)課我們學習了數(shù)列的定義以及給出數(shù)列和表示數(shù)列的幾種方法——列舉法、通項公式、遞推公式、圖象法.這些方法從不同的角度反映數(shù)列的特點.下面我們看這樣一些數(shù)列的例子:(課本P41頁的4個例子)

  (1)0,5,10,15,20,25,…;

  (2)48,53,58,63,…;

  (3)18,15.5,13,10.5,8,5.5…;

  (4)10 072,10 144,10 216,10 288,10 366,….

  請你們來寫出上述四個數(shù)列的第7項.

  生:第一個數(shù)列的第7項為30,第二個數(shù)列的第7項為78,第三個數(shù)列的第7項為3,第四個數(shù)列的第7項為10 510.

  師:我來問一下,你依據(jù)什么寫出了這四個數(shù)列的第7項呢?以第二個數(shù)列為例來說一說.

  生:這是由第二個數(shù)列的后一項總比前一項多5,依據(jù)這個規(guī)律性我得到了這個數(shù)列的第7項為78.

  師:說得很有道理!我再請同學們仔細觀察一下,看看以上四個數(shù)列有什么共同特征?我說的是共同特征.

  生:1每相鄰兩項的差相等,都等于同一個常數(shù).

  師:作差是否有順序,誰與誰相減?

  生:1作差的順序是后項減前項,不能顛倒.

  師:以上四個數(shù)列的共同特征:從第二項起,每一項與它前面一項的差等于同一個常數(shù)(即等差);我們給具有這種特征的數(shù)列起一個名字叫——等差數(shù)列.

  這就是我們這節(jié)課要研究的內容.

  推進新課

  等差數(shù)列的定義:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示).

 。1)公差d一定是由后項減前項所得,而不能用前項減后項來求;

 。2)對于數(shù)列{an},若an-a n-1=d(與n無關的數(shù)或字母),n≥2,n∈N*,則此數(shù)列是等差數(shù)列,d叫做公差.

  師:定義中的關鍵字是什么?(學生:在學習中經常遇到一些概念,能否抓住定義中的關鍵字,是能否正確地、深入的理解和掌握概念的重要條件,更是學好數(shù)學及其他學科的重要一環(huán).因此教師:應該教會學生:如何深入理解一個概念,以培養(yǎng)學生:分析問題、認識問題的能力)

  生:從“第二項起”和“同一個常數(shù)”.

  師::很好!

  師:請同學們思考:數(shù)列(1)、(2)、(3)、(4)的通項公式存在嗎?如果存在,分別是什么?

  生:數(shù)列(1)通項公式為5n-5,數(shù)列(2)通項公式為5n+43,數(shù)列(3)通項公式為2.5n-15.5,….

  師:好,這位同學用上節(jié)課學到的知識求出了這幾個數(shù)列的通項公式,實質上這幾個通項公式有共同的特點,無論是在求解方法上,還是在所求的結果方面都存在許多共性,下面我們來共同思考.

  [合作探究]

  等差數(shù)列的通項公式

  師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關系而得到的,若一個等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得什么?

  生:a2-a1=d,即a2=a1+d.

  師:對,繼續(xù)說下去!

  生:a3-a2=d,即a3=a2+d=a1+2d;

  a4-a3=d,即a4=a3+d=a1+3d;

  ……

  師:好!規(guī)律性的東西讓你找出來了,你能由此歸納出等差數(shù)列的通項公式嗎?

  生:由上述各式可以歸納出等差數(shù)列的通項公式是an=a1+(n-1)d.

  師:很好!這樣說來,若已知一數(shù)列為等差數(shù)列,則只要知其首項a1和公差d,便可求得其通項an了.需要說明的是:此公式只是等差數(shù)列通項公式的猜想,你能證明它嗎?

  生:前面已學過一種方法叫迭加法,我認為可以用.證明過程是這樣的:

  因為a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.將它們相加便可以得到:an=a1+(n-1)d.

  師:太好了!真是活學活用啊!這樣一來我們通過證明就可以放心使用這個通項公式了.

 。劢處煟壕v]

  由上述關系還可得:am=a1+(m-1)d,

  即a1=am-(m-1)d.

  則an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

  即等差數(shù)列的第二通項公式an=am+(n-m)d.(這是變通的通項公式)

  由此我們還可以得到.

  [例題剖析]

  【例1】(1)求等差數(shù)列8,5,2,…的第20項;

 。2)-401是不是等差數(shù)列-5,-9,-13…的`項?如果是,是第幾項?

  師:這個等差數(shù)列的首項和公差分別是什么?你能求出它的第20項嗎?

  生:1這題太簡單了!首項和公差分別是a1=8,d=5-8=2-5=-3.又因為n=20,所以由等差數(shù)列的通項公式,得a20=8+(20-1)×(-3)=-49.

  師:好!下面我們來看看第(2)小題怎么做.

  生:2由a1=-5,d=-9-(-5)=-4得數(shù)列通項公式為an=-5-4(n-1).

  由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是這個數(shù)列的第100項.

  師:剛才兩個同學將問題解決得很好,我們做本例的目的是為了熟悉公式,實質上通項公式就是an,a1,d,n組成的方程(獨立的量有三個).

  說明:(1)強調當數(shù)列{an}的項數(shù)n已知時,下標應是確切的數(shù)字;(2)實際上是求一個方程的正整數(shù)解的問題.這類問題學生:以前見得較少,可向學生:著重點出本問題的實質:要判斷-401是不是數(shù)列的項,關鍵是求出數(shù)列的通項公式an,判斷是否存在正整數(shù)n,使得an=-401成立.

  【例2】已知數(shù)列{an}的通項公式an=pn+q,其中p、q是常數(shù),那么這個數(shù)列是否一定是等差數(shù)列?若是,首項與公差分別是什么?

  例題分析:

  師:由等差數(shù)列的定義,要判定{an}是不是等差數(shù)列,只要根據(jù)什么?

  生:只要看差an-an-1(n≥2)是不是一個與n無關的常數(shù).

  師:說得對,請你來求解.

  生:當n≥2時,〔取數(shù)列{an}中的任意相鄰兩項an-1與an(n≥2)〕

  an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p為常數(shù),

  所以我們說{an}是等差數(shù)列,首項a1=p+q,公差為p.

  師:這里要重點說明的是:

  (1)若p=0,則{an}是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,….

  (2)若p≠0,則an是關于n的一次式,從圖象上看,表示數(shù)列的各點(n,an)均在一次函數(shù)y=px+q的圖象上,一次項的系數(shù)是公差p,直線在y軸上的截距為q.

  (3)數(shù)列{an}為等差數(shù)列的充要條件是其通項an=pn+q(p、q是常數(shù)),稱其為第3通項公式.課堂練習

  (1)求等差數(shù)列3,7,11,…的第4項與第10項.

  分析:根據(jù)所給數(shù)列的前3項求得首項和公差,寫出該數(shù)列的通項公式,從而求出所┣笙.

  解:根據(jù)題意可知a1=3,d=7-3=4.∴該數(shù)列的通項公式為an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.

  評述:關鍵是求出通項公式.

  (2)求等差數(shù)列10,8,6,…的第20項.

  解:根據(jù)題意可知a1=10,d=8-10=-2.

  所以該數(shù)列的通項公式為an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.

  評述:要求學生:注意解題步驟的規(guī)范性與準確性.

  (3)100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?如果不是,請說明理由.

  分析:要想判斷一個數(shù)是否為某一個數(shù)列的其中一項,其關鍵是要看是否存在一個正整數(shù)n值,使得an等于這個數(shù).

  解:根據(jù)題意可得a1=2,d=9-2=7.因而此數(shù)列通項公式為an=2+(n-1)×7=7n-5.

  令7n-5=100,解得n=15.所以100是這個數(shù)列的第15項.

  (4)-20是不是等差數(shù)列0,,-7,…的項?如果是,是第幾項?如果不是,請說明理由.

  解:由題意可知a1=0,,因而此數(shù)列的通項公式為.

  令,解得.因為沒有正整數(shù)解,所以-20不是這個數(shù)列的項.

  課堂小結

  師:(1)本節(jié)課你們學了什么?(2)要注意什么?(3)在生:活中能否運用?(讓學生:反思、歸納、總結,這樣來培養(yǎng)學生:的概括能力、表達能力)

  生:通過本課時的學習,首先要理解和掌握等差數(shù)列的定義及數(shù)學表達式a n-a n-1=d(n≥2);其次要會推導等差數(shù)列的通項公式an=a1+(n-1)d(n≥1).

數(shù)列公式大全3

  等差數(shù)列公式an=a1+(n-1)d

  a1為首項,an為第n項的.通項公式,d為公差

  前n項和公式為:Sn=na1+n(n-1)d/2

  Sn=(a1+an)n/2

  若m+n=p+q則:存在am+an=ap+aq

  若m+n=2p則:am+an=2ap

  以上n.m.p.q均為正整數(shù)

  文字翻譯

  第n項的值an=首項+(項數(shù)-1)×公差

  前n項的和Sn=首項×n+項數(shù)(項數(shù)-1)公差/2

  公差d=(an-a1)÷(n-1)

  項數(shù)=(末項-首項)÷公差+1

  數(shù)列為奇數(shù)項時,前n項的和=中間項×項數(shù)

  數(shù)列為偶數(shù)項,求首尾項相加,用它的和除以2

  等差中項公式2an+1=an+an+2其中{an}是等差數(shù)列

  通項公式

  公差×項數(shù)+首項-公差

數(shù)列公式大全4

  小升初奧數(shù)之數(shù)列求和公式匯總

  等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。

  基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示; 項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;

  公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;

  通項:表示數(shù)列中每一個數(shù)的.公式,一般用an表示; 數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示

  基本思路:等差數(shù)列中涉及五個量:a1 ,an, d, n, sn,,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。

  基本公式:通項公式:an = a1+(n-1)d;

  通項=首項+(項數(shù)一1) ×公差;

  數(shù)列和公式:sn,= (a1+ an)×n÷2;

  數(shù)列和=(首項+末項)×項數(shù)÷2;

  項數(shù)公式:n= (an+ a1)÷d+1;

  項數(shù)=(末項-首項)÷公差+1;

  公差公式:d =(an-a1))÷(n-1);

  公差=(末項-首項)÷(項數(shù)-1);

  關鍵問題:確定已知量和未知量,確定使用的公式

數(shù)列公式大全5

  以下是高中數(shù)學《等差數(shù)列前n項和的公式》說課稿,僅供參考。

  教學目標

  A、知識目標:

  掌握等差數(shù)列前n項和公式的推導方法;掌握公式的運用。

  B、能力目標:

  (1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

  (2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數(shù)列的求和公式,培養(yǎng)學生類比思維能力。

  (3)通過對公式從不同角度、不同側面的剖析,培養(yǎng)學生思維的靈活性,提高學生分析問題和解決問題的能力。

  C、情感目標:(數(shù)學文化價值)

  (1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。

  (2)通過公式的運用,樹立學生"大眾教學"的思想意識。

  (3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學史,激發(fā)學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數(shù)學的心理體驗,產生熱愛數(shù)學的情感。

  教學重點:等差數(shù)列前n項和的公式。

  教學難點:等差數(shù)列前n項和的.公式的靈活運用。

  教學方法:啟發(fā)、討論、引導式。

  教具:現(xiàn)代教育多媒體技術。

  教學過程

  一、創(chuàng)設情景,導入新課。

  師:上幾節(jié),我們已經掌握了等差數(shù)列的概念、通項公式及其有關性質,今天要進一步研究等差數(shù)列的前n項和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學家高斯"神速求和"的故事,小高斯上小學四年級時,一次教師布置了一道數(shù)學習題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

  例1,計算:1+2+3+4+5+6+7+8+9+10.

  這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發(fā)言解答。

  生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。

  生2:可設S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。

  上面兩式相加得2S=11+10+......+11=10×11=110

  10個

  所以我們得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  師:高斯神速計算出1到100所有自然數(shù)的各的方法,和上述兩位同學的方法相類似。

  理由是:1+100=2+99=3+98=......=50+51=101,有50個101,所以1+2+3+......+100=50×101=5050。請同學們想一下,上面的方法用到等差數(shù)列的哪一個性質呢?

  生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq.

  二、教授新課(嘗試推導)

  師:如果已知等差數(shù)列的首項a1,項數(shù)為n,第n項an,根據(jù)等差數(shù)列的性質,如何來導出它的前n項和Sn計算公式呢?根據(jù)上面的例子同學們自己完成推導,并請一位學生板演。

  生4:Sn=a1+a2+......an-1+an也可寫成

  Sn=an+an-1+......a2+a1

  兩式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)

  n個

  =n(a1+an)

  所以Sn=

  #FormatImgID_0#

  (I)

  師:好!如果已知等差數(shù)列的首項為a1,公差為d,項數(shù)為n,則an=a1+(n-1)d代入公式(1)得

  Sn=na1+

  #FormatImgID_1#

  d(II) 上面(I)、(II)兩個式子稱為等差數(shù)列的前n項和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項a1,下底是第n項an,高是項數(shù)n。引導學生總結:這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關系聯(lián)系?[an=a1+(n-1)d,Sn=

  #FormatImgID_2#

  =na1+

  #FormatImgID_3#

  d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應用。

  三、公式的應用(通過實例演練,形成技能)。

  1、直接代公式(讓學生迅速熟悉公式,即用基本量觀點認識公式)例2、計算:

  (1)1+2+3+......+n

  (2)1+3+5+......+(2n-1)

  (3)2+4+6+......+2n

  (4)1-2+3-4+5-6+......+(2n-1)-2n

  請同學們先完成(1)-(3),并請一位同學回答。

  生5:直接利用等差數(shù)列求和公式(I),得

  (1)1+2+3+......+n=

  #FormatImgID_4#

  (2)1+3+5+......+(2n-1)=

  #FormatImgID_5#

  (3)2+4+6+......+2n=

  #FormatImgID_6#

  =n(n+1)

  師:第(4)小題數(shù)列共有幾項?是否為等差數(shù)列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學生發(fā)言解答。

  生6:(4)中的數(shù)列共有2n項,不是等差數(shù)列,但把正項和負項分開,可看成兩個等差數(shù)列,所以

  原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)

  =n2-n(n+1)=-n

  生7:上題雖然不是等差數(shù)列,但有一個規(guī)律,兩項結合都為-1,故可得另一解法:

  原式=-1-1-......-1=-n

  n個

  師:很好!在解題時我們應仔細觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數(shù)列的項數(shù),否則會引起錯解。

  例3、(1)數(shù)列{an}是公差d=-2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=-2,∴a1=6

  ∴S12=12 a1+66×(-2)=-60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+

  #FormatImgID_7#

  =145

  師:通過上面例題我們掌握了等差數(shù)列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構造方程或方程組求另外兩個變量(知三求二),請同學們根據(jù)例3自己編題,作為本節(jié)的課外練習題,以便下節(jié)課交流。

  師:(繼續(xù)引導學生,將第(2)小題改編)

 、贁(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導學生運用等差數(shù)列性質,用整體思想考慮求a1+a10的值。

  2、用整體觀點認識Sn公式。

  例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學生解)

  師:來看第(1)小題,寫出的計算公式S16=

  #FormatImgID_8#

  =8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?

  生10:根據(jù)等差數(shù)列的性質,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  師:對!(簡單小結)這個題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數(shù)學問題的體現(xiàn)。

  師:由于時間關系,我們對等差數(shù)列前n項和公式Sn的運用一一剖析,引導學生觀察當d≠0時,Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點如何來認識Sn公式后,這留給同學們課外繼續(xù)思考。

  最后請大家課外思考Sn公式(1)的逆命題:

  已知數(shù)列{an}的前n項和為Sn,若對于所有自然數(shù)n,都有Sn=

  #FormatImgID_9#

  。數(shù)列{an}是否為等差數(shù)列,并說明理由。

  四、小結與作業(yè)。

  師:接下來請同學們一起來小結本節(jié)課所講的內容。

  生11:1、用倒序相加法推導等差數(shù)列前n項和公式。

  2、用所推導的兩個公式解決有關例題,熟悉對Sn公式的運用。

  生12:1、運用Sn公式要注意此等差數(shù)列的項數(shù)n的值。

  2、具體用Sn公式時,要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

  3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應用等差數(shù)列的有關性質,看能否用整體思想的方法求a1+an的值。

  師:通過以上幾例,說明在解題中靈活應用所學性質,要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發(fā)現(xiàn)更多的性質,主動積極地去學習。

  本節(jié)所滲透的數(shù)學方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。

  數(shù)學思想:類比思想、整體思想、方程思想、函數(shù)思想等。

數(shù)列公式大全6

  不過一般分小題、有梯度設問,往往是第1小題就是求數(shù)列的通項公式,難度適中,一般考生可突破,爭取分數(shù),而且是做第2小題的基礎,因此,求數(shù)列通項公式的解題方法、技巧,每一位考生都必須熟練掌握。求數(shù)列通項公式的題型很多,不同的題型有不同的解決方法。下面結合教學實踐,談談求數(shù)列通項公式的解題思路。

  一、已知數(shù)列的前幾項

  已知數(shù)列的前幾項,求通項公式。通過觀察找規(guī)律,分析出數(shù)列的項與項數(shù)之間的關系,從而求出通項公式。這種方法稱為觀察法,也即是歸納推理。

  例1、求數(shù)列的通項公式

 。1)0,22——1/3,32——1/4,42+1/5……

 。2)9,99,999,……

  分析:(1)0=12——1/2,每一項的分子是項數(shù)的平方減去1,分母是項數(shù)加上1,n2——1/n+1=n——1,其實,該數(shù)列各項可化簡為0,1,2,3,……,易知an=n——1。

 。2)各項可拆成10-1,102-1,103-1,……,an=10n——1。

  此題型主要通過讓學生觀察、試驗、歸納推理等活動,且在此基礎上進一步通過比較、分析、概括、證明去揭示事物的本質,從而培養(yǎng)學生的思維能力。

  二、已知數(shù)列的前n項和Sn

  已知數(shù)列的前n項和Sn,求通項公式an,主要通過an與Sn的關系轉化,即an -{ S1(n=1) Sn -Sn——1(n≥2)

  例2、已知數(shù)列{an }的前n項和Sn=2n+3,求an

  分析:Sn=a1+a2 +……+an——1+an

  Sn——1=a1+a2 +……+an——1

  上兩式相減得 Sn -Sn——1=an

  解:當n=1時,a1=S1=5

  當n≥2時,an =Sn -Sn——1=2n+3-(2n——1+3)=2n——1

  ∵n=1不適合上式

  ∴an ={5(n=1) 2n——1(n≥2)

  三、已知an與Sn關系

  已知數(shù)列的第n項an與前n項和Sn間的關系:Sn=f(an),求an。一般的思路是先將Sn與an的關系轉化為an與an——1的關系,再根據(jù)與的關系特征分為如下幾種類型。不同的類型,要用不同的方法解決。

  (1)an=an——1+k。數(shù)列屬等差數(shù)列,直接代公式可求通項公式。

  例3、已知數(shù)列{an},滿足a1=3,an=an——1+8,求an。

  分析:由已知條件可知數(shù)列是以3為首項,8為公差的等差數(shù)列,直接代公式可求得an=8n-5。

 。2)an=kan——1(k為常數(shù))。數(shù)列屬等比數(shù)列,直接代公式可求通項公式。

  例4、數(shù)列{an}的前n項和Sn,a1=1,an+1=2Sn+1(n∈N+)

  求數(shù)列{an}的`通項公式。

  分析:根據(jù)an與Sn的關系,將an+1=2Sn+1轉化為an與an+1的關系。

  解:由an+1=2Sn+1

  得an=2Sn-1+1(n≥2)

  兩式相減,得an+1-an=2an

  ∴an+1=3an (n≥2)

  ∵a2=2Sn+1=3

  ∴a2=3a1

  ∴{an}是以1為首項,3為公比的等比數(shù)列

  ∴an=3n-1

 。3)an+1=an+f(n),用疊加法

  思路:令n=1,2,3,……,n-1

  得a2=a1+f(1)

  a3=a2+f(2)

  a4=a3+f(3)

  ……

  +)an=an——1+f(n-1)

  an=a1+f(1)+f(2)+…+f(n-1)

  例5、若數(shù)列{an}滿足a1=2,an+1=an+2n

  則{an}的通項公式=( )

  解:∵an+1=an+2n

  ∴a2 =a1+2×1

  a3=a2+2×2

  a4=a3+2×3

  ……

  +)an=an——1+2(n-1)

  an=a1+2(1+2+3+…+n-1)

  =2+2×(1+n-1)(n-1)

  =n2-n+2

 。4)an+1=f(n)an,用累積法

  思路:令n=1,2,3,……,n-1

  得a2 =f(1)a1 a3=f(2)a2 a4=f(3)a3

  ……

  ×)an=f(n-1)an-1

  an=a1·f(1)·f(2)·f(3)……f(n-1)

  例6、若數(shù)列{an}滿足a1=1,an+1=2n+an,則an=( )

  解:∵an+1=2nan ∴a2 =21a1

  a3=22a2 a4=23a3

  ……

  ×) an=2n——1·an——1

  an=2·22·23·……·2n-1a1=2n(n-1)/2

  (5)an=pan——1+q, an=pan——1+f(n)

  an+1=an+p·qn(pq≠0),

  an=p(an——1)q, an+1=ran/pan+q=(pr≠0,q≠r)

  (p、q、r為常數(shù))

  這些類型均可用構造法或迭代法。

  ①an=pan——1+q (p、q為常數(shù))

  構造法:將原數(shù)列的各項均加上一個常數(shù),構成一個等比數(shù)列,然后,求出該等比數(shù)列的通項公式,再還原為所求數(shù)列的通項公式。

  將關系式兩邊都加上x

  得an+x=Pan——1+q+x

  =P(an——1 + q+x/p)

  令x=q+x/p,得x=q/p-1

  ∴an+q/p-1=P(an——1+q/p-1)

  ∴{an+q/p-1}是以a1+q/p-1為首項,P為公比的等比數(shù)列。

  ∴an+q/p-1=(a1+q/p-1)Pn-1

  ∴an=(a1+q/p-1)Pn-1-q/p-1

  迭代法:an=p(an——1+q)=p(pan-2+q)+q

  =p2((pan-3+q)+pq+q……

  例7、數(shù)列{an}的前n項和為Sn,且Sn=2an-n(n∈N+)求an

  解析:由Sn=2an-n 得Sn-1=2an-1-(n-1) (n≥2,n∈N+)

  兩式相減得an=2an-1+1

  兩邊加1得an+1=2(an-1+1) (n≥2,n∈N+)

  構造成以2為公比的等比數(shù)列{an+1}

 、赼n=Pan-1+f(n)

  例8、數(shù)列{an}中,a1為常數(shù),且an=-2an-1+3n-1(≥2,n∈N)

  證明:an=(-2)n-1a1+3n+(-1)n·3·2n-1/5

  分析:這道題是證明題,最簡單的方法當然是數(shù)學歸納法,現(xiàn)用構造法和迭代法來證明。

  方法一:構造公比為-2的等比數(shù)列{an+λ·3n}

  用比較系數(shù)法可求得λ=-1/5

  方法二:構造等差型數(shù)列{an/(-2)n}。由已知兩邊同以(-2)n,得an/(-2)n=an-1/(-2)n=1/3·(-3/2)n,用疊加法處理。

  方法三:迭代法。

  an=-2an-1+3n-1=-2(-2an-2+3n-2)+3n-1

  =(-2)2an-2+(-2)·3n-2+3n-1

  =(-2)2(-2an-3+3n-3)+(-2)·3n-2+3n-1

  =(-2)3an-3+(-2)·3n-3+(-2)·3n-2+3n-1

  =(-2)n-1a1+(-2)n-1·3+(-2)n-3·+32+……+(-2)·3n-2+3n-1

  =(-2)n-1a1+3n+(-1)n-2·3·2n-1/5

 、踑n+1=λan+p·qn(pq≠0)

 。á。┊敠=qn+1時,等式兩邊同除以,就可構造出一個等差數(shù)列{an/qn}。

  例9、在數(shù)列{an}中,a1=4,an+1+2n+1,求an。

  分析:在an+1=2an+2n+1兩邊同除以2n+1,得an+1/2n+1=an/2n+1

  ∴{an/2n}是以a1/2=2為首項,1為公差的等差數(shù)列。

  (ⅱ)當λ≠q時,等式兩邊同除以qn+1,令bn=an/qn,得bn+1=λ/qbn+p,再構造成等比數(shù)列求bn,從而求出an。

  例10、已知a1=1,an=3an-1+2n-1,求an

  分析:從an=3an-1+2n-1兩邊都除以2n,

  得an/2n=3/2 an-1/2n-1+1/2

  令an/2n=bn

  則bn=3/2bn-1+1/2

 、躠n=p(an——1)q(p、q為常數(shù))

  例11、已知an=1/a an——12,首項a1,求an。

  方法一:將已知兩邊取對數(shù)

  得lgan=2lgan——1-lga

  令bn=lgan

  得bn=2bn-1-lga,再構造成等比數(shù)列求bn,從而求出an。

  方法二:迭代法

  an=1/a a2n——1=1/a (1/a a2n——2)2=1/a3 a4n——2

  =1/a3 (1/a a2n——3)4=1/a7·an——38=a·(an——3/a)23

  =……=a·(a1/a)2n——1

 、輆n+1=ran/pan+q(p、q、r為常數(shù),pr≠0,q≠r)

  將等式兩邊取倒數(shù),得1/an+1=q/r·1/an+p/r,再構造成等比數(shù)列求an。

  例12、在{an}中,a1=1,an+1=an/an+2,求an

  解:∵an+1=an/an+2

  ∴1/an+1=2·1/an+1

  兩邊加上1,得1/an+1+1=2(1/an+1)

  ∴{1/an+1}是以1/an+1=2為首項,2為公比的等比數(shù)列

  ∴ 1/an+1=2×2n-1=2n

  ∴an=1/2n-1

  以上羅列出求數(shù)列通項公式的解題思路雖然很清晰,但是一般考生對第三項中的5種類型題用構選法和迭代法都比較困難的。遇到此情況,可轉化為第一種類型解決,即從an與Sn的關系式求出數(shù)列的前幾項,用觀察法求an。

數(shù)列公式大全7

  新課程理念倡導的數(shù)學課堂教學設計必須“以學生的學為本”,“以學生的發(fā)展為本”,即數(shù)學課堂教學設計應當是人的發(fā)展的“學程”設計,而不單純以學科為中心的“教程”的設計。

  一、教學目標的反思

  本節(jié)課的教學設計意圖:

  1。進一步促進學生數(shù)學學習方式的改善

  這是等比數(shù)列的前n項和公式的第一課時,是實踐二期課改中研究型學習問題的很好材料,可以落實新課程標準倡導的“提倡積極主動,勇于探索的學習方式;強調本質,注意適度形式化”的理念,教與學的重心不只是獲取知識,而是轉到學會思考、學會學習上,教師注意培養(yǎng)學生以研究的態(tài)度和方式去認真觀察、分析數(shù)學現(xiàn)象,提出新的問題,發(fā)現(xiàn)事物的內在規(guī)律,引導學生自覺探索,進一步培養(yǎng)學生的自主學習能力。

  2。落實二期課改中的三維目標,強調探究的過程和方法

  “知識與技能、過程與方法、情感,態(tài)度與價值”這三維目標是“以學生的發(fā)展為本”的教育理念在二期課改中的具體體現(xiàn),本節(jié)課是數(shù)學公式教學課,所以強調學生對認知過程的經歷和體驗,重視對實際問題的理解和應用推廣,強調學生對探究過程和方法的掌握,探究過程包括發(fā)現(xiàn)和提出問題,通過觀察、抽象、概括、類比、歸納等探究方法進行實踐。

  在此基礎上,根據(jù)本班學生是區(qū)重點學校學生,學習勤懇,平時好提問,敢于交流與表達自己想法,故本節(jié)課制定了如下教學目標:

 。╨)、通過歷史典故引出等比數(shù)列求和問題,并在問題解決的過程中自主探索等比數(shù)列的前n項和公式的`求法。

 。2)、經歷等比數(shù)列的前n項和公式的推導過程,了解推導公式所用的方法,掌握等比數(shù)列的前n項和公式,并能進行簡單應用。

  二、教材的分析和反思:

  本節(jié)課是《等比數(shù)列的前n項和公式》的第一課時,之前學生已經掌握了數(shù)列的基本概念、等差與等比數(shù)列的通項公式及等差數(shù)列的前n項和公式,對于本節(jié)課所需的知識點和探究方法都有了一定的儲備,新教材內容是給出了情景問題:印度國王獎賞國際象棋發(fā)明者的故事,通過求棋盤上的麥?倲(shù)這個問題的解決,體會由多到少的錯位相減法的數(shù)學思想,并將其類比推廣到一般的等比數(shù)列的前n項和的求法,最后通過一些例題幫助學生鞏固與掌

數(shù)列公式大全8

  在幾個公式中,最常用的是中項求和公式,其次是高斯求和公式。希望同學們能對這兩個公式重點掌握和應用。

  常見例題解析:

  例1.某劇院有25排座位,后一排比前一排多一個,第一排有10個,請問一共有多少個座位?

  A. 500 B. 550 C.600 D.650

  【答案】B。第一排有10人,最后一排有10+(25-1)×1=34。根據(jù)高斯求和公式得:Sn=25(10+34)÷2=550。所以選擇B。

  例2.劇院當中 共有33排,每一排比前排多2人,第一排有10人,請問該劇場共有多少人?

  A.1250 B. 1386 C.1428 D.1576

  【答案】B。因為一共有33排,所有根據(jù)中項求和公式得:Sn=33a17。一定能夠被33整除,即你能背3整除又能被11整除。符合條件的只有1386。所以我們選擇B。

  由于等比數(shù)列求和公式少,所以考法也相對簡單。有的時候是直接應用公式進行解題,有的時候只是用等比數(shù)列的思想,并不用求和公式。

  常見例題解析:

  例3.一種細菌分裂成第一天的兩倍,經過20天的時間可以長滿整個培養(yǎng)皿,請問第幾天可以漲到一半?

  A.10 B. 15 C.18 D.19

  【答案】D。每天是頭一天的'兩倍,20天的時候長滿,則第19天的時候應該正好長到培養(yǎng)皿的一半。所以選擇D。

  例4.老師向告訴小明一個消息,用了一分鐘。事情緊急,老師和小明要不斷地給其他同學打電話告知該消息并讓知道這個消息的同學盡快把這個消息通知給其他人。班里面以公共有60個學生,請問最快需要多長時間可以讓所有人都知道該消息?

  A.3 B. 4 C.5 D.6

  【答案】D。一分鐘后,有老師和小明2個知道。2分鐘后有4個人知道;3分鐘后有8個人知道;4分鐘后有16個人知道;5分鐘后有32個人知道;6分鐘后有64個人知道,大于老師和60個學生的數(shù)量和61,所以6分鐘后所有人都可以知道該消息了。

  這兩類數(shù)列掌握之后,做題的時候便可助你一臂之力了。

數(shù)列公式大全9

  等比數(shù)列求和公式

  1.等比數(shù)列通項公式

  an=a1×q^(n-1);

  推廣式:an=am×q^(n-m);

  2.等比數(shù)列求和公式

  Sn=n×a1(q=1);

  Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q)=a1(q^n-1)/(q-1)(q≠1);

  (q為公比,n為項數(shù))。

  3.等比數(shù)列求和公式推導

  (1)Sn=a1+a2+a3+...+an(公比為q);

  (2)q*Sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1);

  (3)Sn-q*Sn=a1-a(n+1);

  (4)(1-q)Sn=a1-a1*q^n;

  (5)Sn=(a1-a1*q^n)/(1-q);

  (6)Sn=(a1-an*q)/(1-q);

  (7)Sn=a1(1-q^n)/(1-q);

  (8)Sn=k*(1-q^n)~y=k*(1-a^x)。

  拓展閱讀:等比數(shù)列的性質

  (1)若m、n、p、q∈N+,且m+n=p+q,則am×an=ap×aq。

  (2)在等比數(shù)列中,依次每k項之和仍成等比數(shù)列。

  (3)若“G是a、b的等比中項”則“G2=ab(G≠0)”。

  (4)若{an}是等比數(shù)列,公比為q1,{bn}也是等比數(shù)列,公比是q2,則{a2n},{a3n}…是等比數(shù)列,公比為q1^2,q1^3…{can},c是常數(shù),{an×bn},{an/bn}是等比數(shù)列,公比為q1,q1q2,q1/q2。

  (5)若(an)為等比數(shù)列且各項為正,公比為q,則(log以a為底an的對數(shù))成等差,公差為log以a為底q的對數(shù)。

  (6)等比數(shù)列前n項之和。

  在等比數(shù)列中,首項A1與公比q都不為零。

  注意:上述公式中An表示A的n次方。

  (7)由于首項為a1,公比為q的等比數(shù)列的.通項公式可以寫成an=(a1/q)×qn,它的指數(shù)函數(shù)y=ax有著密切的聯(lián)系,從而可以利用指數(shù)函數(shù)的性質來研究等比數(shù)列。

數(shù)列公式大全10

  在高一(5)班上好“等差數(shù)列求和公式”這一堂課后,通過和學生的互動,我對求和公式上課時遇到的幾點問題提出了一點思考:

  一、對內容的理解及相應的教學設計

  1、“數(shù)列前n項的和”是針對一般數(shù)列而提出的一個概念,教材在這里提出這個概念只是因為本節(jié)內容首次研究數(shù)列前n項和的問題。因此,教學設計時應注意“從等差數(shù)列中跳出來”學習這個概念,以免學生誤認為這只是等差數(shù)列的一個概念。

  2、等差數(shù)列求和公式的教學重點是公式的推導過程,從“掌握公式”來解釋,應該使學生會推導公式、理解公式和運用公式解決問題。其實還不止這些,讓學生體驗推導過程中所包含的數(shù)學思想方法才是更高境界的教學追求,這一點后面再作展開。本節(jié)課在這方面有設計、有突破,但教師組織學生討論與交流的環(huán)節(jié)似乎還不夠充分,因為這個層面上的學習更側重于讓學生“悟”。

  3、用公式解決問題的內容很豐富。本節(jié)課只考慮“已知等差數(shù)列,求前n項”的問題,使課堂不被大量的變式問題所困擾,而能專心將教學的重點放在公式的推導過程。這樣的處理比較恰當。

  二、求和公式中的數(shù)學思想方法

  在推導等差數(shù)列求和公式的過程中,有兩種極其重要的數(shù)學思想方法。一種是從特殊到一般的探究思想方法,另一種是從一般到特殊的化歸思想方法。

  從特殊到一般的探究思想方法大家都很熟悉,本節(jié)課基本按教材的設計,依次解決幾個問題。

  從一般到特殊的化歸思想方法的揭示是本節(jié)課的最大成功之處。以往人們常常只注意到“倒序相加”是推導等差數(shù)列求和公式的關鍵,而忽視了對為什么要這樣做的思考。同樣是求和,與的本質區(qū)別是什么?事實上,前者是100個不相同的數(shù)求和,后者是50個相同數(shù)的求和,求和的`本質區(qū)別并不在于是100個還是50個,而在于“相同的數(shù)”與“不相同的數(shù)”。相同的數(shù)求和是一個極其簡單并且在乘法中早已解決了的問題,將不“相同的數(shù)求和”(一般)化歸為“相同數(shù)的求和”(特殊),這就是推導等差數(shù)列求和公式的思想精髓。不僅如此,將一般的求和問題化歸為我們會求(特殊)的求和問題這種思想還將在以后的求和問題中反復體現(xiàn)。

  在等差數(shù)列求和公式的推導過程中,其實有這樣一個問題鏈:

  為什么要對和式分組配對?(因為想轉化為相同數(shù)求和)

  為什么要“倒序相加”?(因為可以避免項數(shù)奇偶性討論)

  為什么“倒序相加”能轉化為相同數(shù)求和?(因為等差數(shù)列性質)

  由此可見,“倒序相加”只是一種手段和技巧,轉化為相同數(shù)求和是解決問題的思想,等差數(shù)列自身的性質是所采取的手段能達到目的的根本原因。

  三、幾點看法

  1、注意挖掘基礎知識的教學內涵

  對待概念、公式等內容,如果只停留在知識自身層面,那么教學常常會落入死記硬背境地。其實越是基礎的東西其所包含的思想方法往往越深刻,值得大家?guī)ьI學生去認真體驗,當然這樣的課不好上。

  2、用好教材

  現(xiàn)在的教材有不少好的教學設計,需要教師認真對待,反復領會教材的意圖。當然,由于教材的客觀局限性,還需要教師去處理教材。譬如本節(jié)課,課堂所呈現(xiàn)的基本上是教材的內容順序和教學設計,但面對教材所給的全部內容時,課堂能否在某個環(huán)節(jié)上停下來,能否合理地選取教材的一部分內容作為這一節(jié)課的內容,而將其他的內容留到后面的課,這就體現(xiàn)教師的認識和處理教材的水平。

  3、學無止境

  一堂課所要追求的教學價值當然是盡量能多一些更好,但應分清主次。譬如本節(jié)課還用了幾個“實際生活問題”,意圖是明顯的,教師的提問和處理也比較恰當。課沒有最好只有更好!

數(shù)列公式大全11

  嚴老師的課堂最大的亮點就是師生互動如行云流水,如春風拂面,如魚翔淺底,輕松活潑,而又不乏智慧的光芒,學生參與熱情高,學習氛圍好。這節(jié)課的教學重點就是讓學生通過對例題及其變式的思考,體會“利用遞推關系求數(shù)列的通項公式”的方法(如定義法、累加法、待定系數(shù)法等)和化歸思想 。其實,此類問題既是數(shù)列教學中的難點問題,也是江蘇高考的.熱點問題?傮w而言,在嚴老師的引導下,學生基本達成了教學目標,高一學生能做到這一點已經難能可貴了。筆者建議,是不是可以突破例題和練習的界限,進行如下的教學設計:

  在數(shù)列中,已知,其前項和為,根據(jù)下列條件,分別求數(shù)列的通項公式。

  教師一定要敢于放開手讓學生去思考,去板演,看看他(她)有什么想法,或者有什么困惑,然后再讓學生進行交流,教師要做的就是引導、點評和總結。學生有了這樣的經歷和體驗之后,對問題的認識和理解應該會更深刻。另外,對累加法的應用,筆者認為還是化成差的形式,即“ ”操作起來更方便一些。以上只是個人的一點不成熟的想法,請大家批評指正。

數(shù)列公式大全12

  一、高考數(shù)列基本公式:

  1、一般數(shù)列的通項an與前n項和Sn的關系:an=

  2、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關于n的一次式;當d=0時,an是一個常數(shù)。

  3、等差數(shù)列的前n項和公式:

  當d≠0時,Sn是關于n的二次式且常數(shù)項為0;當d=0時(a1≠0),Sn=na1是關于n的正比例式。

  4、等比數(shù)列的通項公式: an= a1qn-1an= akqn-k

  (其中a1為首項、ak為已知的第k項,an≠0)

  5、等比數(shù)列的前n項和公式:當q=1時,Sn=n a1 (是關于n的正比例式);

  當q≠1時,

  二、高考數(shù)學中有關等差、等比數(shù)列的結論

  1、等差數(shù)列{an}的任意連續(xù)m項的和構成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。

  4、等比數(shù)列{an}的任意連續(xù)m項的.和構成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。

  5、兩個等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

  6、兩個等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列

  7、等差數(shù)列{an}的任意等距離的項構成的數(shù)列仍為等差數(shù)列。

  8、等比數(shù)列{an}的任意等距離的項構成的數(shù)列仍為等比數(shù)列。

  9、三個數(shù)成等差數(shù)列的設法:a-d,a,a+d;四個數(shù)成等差的設法:a-3d,a-d,,a+d,a+3d

  10、三個數(shù)成等比數(shù)列的設法:a/q,a,aq;

  四個數(shù)成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什么?)

  12、{bn}(bn>0)是等比數(shù)列,則{logcbn} (c>0且c≠1) 是等差數(shù)列。

數(shù)列公式大全13

  等差數(shù)列求和公式推導過程:

  設首項為a1 ,末項為an ,項數(shù)為n ,公差為d ,前n項和為Sn ,則有:Sn=(a1+an)n/2 ;Sn=na1+n(n-1)d/2(d為公差)

  當d≠0時,Sn是n的二次函數(shù),(n,Sn)是二次函數(shù)的圖象上一群孤立的點。利用其幾何意義可求前n項和Sn的最值。

  注意:公式一二三事實上是等價的`,在公式一中不必要求公差等于一。

  求和推導證明:由題意得:Sn=a1+a2+a3+...+an①

  Sn=an+a(n-1)+a(n-2)+...+a1②

 、+②得:2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](當n為偶數(shù)時)

  Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2

  Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d這種形式表示可以發(fā)現(xiàn)括號里面的數(shù)都是一個定值,即(A1+An)

  拓展閱讀:等比數(shù)列的五個基本公式

  (1)等比數(shù)列的通項公式是:

  An=A1×q^(n-1)

  若通項公式變形為an=a1/q*q^n(n∈N*),當q>0時,則可把an看作自變量n的函數(shù),點(n,an)是曲線y=a1/q*q^x上的一群孤立的點。

  (2)任意兩項am,an的關系為an=am·q^(n-m)

  (3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:

  a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

  (5)等比求和:Sn=a1+a2+a3+.......+an

 、佼攓≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

  ②當q=1時,Sn=n×a1(q=1)

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

數(shù)列公式大全14

  等比數(shù)列求和公式

  q≠1時,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)

  q=1時,Sn=na1

  (a1為首項,an為第n項,d為公差,q為等比)

  這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0),等比數(shù)列a1≠ 0。注:q=1時,{an}為常數(shù)列。利用等比數(shù)列求和公式可以快速的`計算出該數(shù)列的和。

  等比數(shù)列求和公式推導

  Sn=a1+a2+a3+...+an(公比為q)

  qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)

  Sn-qSn=(1-q)Sn=a1-a(n+1)

  a(n+1)=a1qn

  Sn=a1(1-qn)/(1-q)(q≠1)

數(shù)列公式大全15

  等差數(shù)列

  對于一個數(shù)列{a n },如果任意相鄰兩項之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為 d ;從第一項 a 1 到第n項 a n 的總和,記為 S n 。

  那么 , 通項公式為,其求法很重要,利用了“疊加原理”的思想:

  將以上 n-1 個式子相加, 便會接連消去很多相關的項 ,最終等式左邊余下a n ,而右邊則余下 a1和 n-1 個d,如此便得到上述通項公式。

  此外, 數(shù)列前 n 項的和,其具體推導方式較簡單,可用以上類似的疊加的`方法,也可以采取迭代的方法,在此,不再復述。

  值得說明的是,,也即,前n項的和Sn 除以 n 后,便得到一個以a 1 為首項,以 d /2 為公差的新數(shù)列,利用這一特點可以使很多涉及Sn 的數(shù)列問題迎刃而解。

  等比數(shù)列

  對于一個數(shù)列 {a n },如果任意相鄰兩項之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比 q ;從第一項 a 1 到第n項 a n 的總和,記為 T n 。

  那么, 通項公式為(即a1 乘以q 的 (n-1)次方,其推導為“連乘原理”的思想:

  a 2 = a 1 *q,

  a 3 = a 2 *q,

  a 4 = a 3 *q,

  ````````

  a n = a n-1 *q,

  將以上(n-1)項相乘,左右消去相應項后,左邊余下a n , 右邊余下 a1 和(n-1)個q的乘積,也即得到了所述通項公式。

  此外, 當q=1時 該數(shù)列的前n項和 Tn=a1*n

  當q≠1時 該數(shù)列前n 項的和 T n = a1 * ( 1- q^(n)) / (1-q).

【數(shù)列公式】相關文章:

數(shù)列公式大全03-12

數(shù)列公式大全匯總【15篇】03-12

高二物理公式【經典】03-02

高二物理公式03-02

高三數(shù)學公式03-09

數(shù)學計算公式大全03-12

高二物理公式大全總結整理版_高二學生必備物理公式歸納02-28

高一數(shù)學公式大全03-12

數(shù)學計算公式大全15篇(經典)03-12