- 相關(guān)推薦
初中數(shù)學(xué)代數(shù)公式大全
在我們上學(xué)期間,是不是經(jīng)常追著老師要知識點?知識點是指某個模塊知識的重點、核心內(nèi)容、關(guān)鍵部分。為了幫助大家掌握重要知識點,下面是小編為大家收集的初中數(shù)學(xué)代數(shù)公式大全,歡迎大家分享。
初中數(shù)學(xué)代數(shù)公式 1
代數(shù)公式
1、每份數(shù)×份數(shù)=總數(shù)
總數(shù)÷每份數(shù)=份數(shù)
總數(shù)÷份數(shù)=每份數(shù)
2、1倍數(shù)×倍數(shù)=幾倍數(shù)
幾倍數(shù)÷1倍數(shù)=倍數(shù)
幾倍數(shù)÷倍數(shù)=1倍數(shù)
3、速度×?xí)r間=路程
路程÷速度=時間
路程÷時間=速度
4、單價×數(shù)量=總價
總價÷單價=數(shù)量
總價÷數(shù)量=單價
5、工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6、加數(shù)+加數(shù)=和
和-一個加數(shù)=另一個加數(shù)
7、被減數(shù)-減數(shù)=差
被減數(shù)-差=減數(shù)
差+減數(shù)=被減數(shù)
8、因數(shù)×因數(shù)=積
積÷一個因數(shù)=另一個因數(shù)
9、被除數(shù)÷除數(shù)=商
被除數(shù)÷商=除數(shù)
商×除數(shù)=被除數(shù)
通過上面對數(shù)學(xué)中代數(shù)公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,相信同學(xué)們會從中學(xué)習(xí)的更好的吧,同學(xué)們加油哦!
初中數(shù)學(xué)三角函數(shù)半角公式
同學(xué)們對數(shù)學(xué)中三角函數(shù)半角公式的知識還熟悉吧,下面我們一起來回顧一下哦。
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
以上就是老師對數(shù)學(xué)中三角函數(shù)半角公式知識的講解,希望給同學(xué)們的學(xué)習(xí)很好的幫助,相信同學(xué)們會好好學(xué)習(xí)上面的知識吧。
初中數(shù)學(xué)圖形計算公式
對于數(shù)學(xué)中圖形計算公式的內(nèi)容知識,我們做下面的講解學(xué)習(xí),相信大家會認(rèn)真學(xué)習(xí)的哦。
圖形計算公式
1、正方形:C周長S面積a邊長周長=邊長×4C=4a
面積=邊長×邊長S=a×a
2、正方體:V:體積a:棱長表面積=棱長×棱長×6S表=a×a×6
體積=棱長×棱長×棱長V=a×a×a
3、長方形:C周長S面積a邊長周長=(長+寬)×2C=2(a+b)
面積=長×寬S=ab
4、長方體:V:體積s:面積a:長b:寬h:高
(1)表面積(長×寬+長×高+寬×高)×2S=2(ab+ah+bh)
(2)體積=長×寬×高V=abh
5、三角形:s面積a底h高面積=底×高÷2s=ah÷2
三角形高=面積×2÷底
三角形底=面積×2÷高
6、平行四邊形:s面積a底h高面積=底×高s=ah
7、梯形:s面積a上底b下底h高面積=(上底+下底)×高÷2s=(a+b)×h÷2
8圓形:S面C周長∏d=直徑r=半徑
(1)周長=直徑×∏=2×∏×半徑C=∏d=2∏r
(2)面積=半徑×半徑×∏
9、圓柱體:v體積h:高s:底面積r:底面半徑c:底面周長
(1)側(cè)面積=底面周長×高
(2)表面積=側(cè)面積+底面積×2
(3)體積=底面積×高
(4)體積=側(cè)面積÷2×半徑
10、圓錐體:v體積h高s底面積r底面半徑體積=底面積×高÷3
上面對數(shù)學(xué)中圖形計算公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們會做的'更好吧。
初中數(shù)學(xué)和差問題公式
下面是老師對數(shù)學(xué)中和差問題公式知識的講解,希望給同學(xué)們的學(xué)習(xí)很好的幫助吧。
和差問題公式
總數(shù)÷總份數(shù)=平均數(shù)
和差問題的公式
(和+差)÷2=大數(shù)
(和-差)÷2=小數(shù)
和倍問題
和÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或者和-小數(shù)=大數(shù))
差倍問題
差÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
(或小數(shù)+差=大數(shù))
相信通過上面對和差問題公式知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考出優(yōu)異成績哦。
初中數(shù)學(xué)公式之植樹問題
關(guān)于數(shù)學(xué)中的植樹問題相關(guān)公式的學(xué)習(xí),下面是老師講解的此知識的相關(guān)內(nèi)容,希望給同學(xué)們的學(xué)習(xí)很好的幫助。
植樹問題
1、非封閉線路上的植樹問題主要可分為以下三種情形:
、湃绻诜欠忾]線路的兩端都要植樹,那么:
株數(shù)=段數(shù)+1=全長÷株距-1
全長=株距×(株數(shù)-1)
株距=全長÷(株數(shù)-1)
、迫绻诜欠忾]線路的一端要植樹,另一端不要植樹,那么:
株數(shù)=段數(shù)=全長÷株距
全長=株距×株數(shù)
株距=全長÷株數(shù)
、侨绻诜欠忾]線路的兩端都不要植樹,那么:
株數(shù)=段數(shù)-1=全長÷株距-1
全長=株距×(株數(shù)+1)
株距=全長÷(株數(shù)+1)
2、封閉線路上的植樹問題的數(shù)量關(guān)系如下
株數(shù)=段數(shù)=全長÷株距
全長=株距×株數(shù)
株距=全長÷株數(shù)
通過上面對植樹問題的相關(guān)公式知識的講解學(xué)習(xí),希望同學(xué)們對上面的知識都能很好的學(xué)習(xí),大家努力哦!
初中數(shù)學(xué)公式之盈虧問題
下面是對數(shù)學(xué)中關(guān)于盈虧問題的相關(guān)公式的知識講解,希望給同學(xué)們的學(xué)習(xí)很好的幫助哦。
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數(shù)
(大盈-小盈)÷兩次分配量之差=參加分配的份數(shù)
(大虧-小虧)÷兩次分配量之差=參加分配的份數(shù)
以上對數(shù)學(xué)中盈虧問題公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,相信同學(xué)們會在考試中取得優(yōu)異成績的哦!
初中數(shù)學(xué)代數(shù)公式 2
有理數(shù)的加法運算
同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結(jié)果是零須記好。
【注】“大”減“小”是指絕對值的大小。
有理數(shù)的減法運算
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運算符號法則
同號得正異號負(fù),一項為零積是零。
合并同類項
說起合并同類項,法則千萬不能忘。
只求系數(shù)代數(shù)和,字母指數(shù)留原樣。
去、添括號法則
去括號或添括號,關(guān)鍵要看連接號。
擴號前面是正號,去添括號不變號。
括號前面是負(fù)號,去添括號都變號。
解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。
積化和差變兩項,完全平方不是它。
完全平方公式
二數(shù)和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的'平方加再加,先減后加差平方。
解一元一次方程
先去分母再括號,移項變號要記牢。
同類各項去合并,系數(shù)化“1”還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程
先去分母再括號,移項合并同類項。
系數(shù)化1還沒好,準(zhǔn)確無誤不白忙。
因式分解與乘法
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負(fù)號。
同正則正負(fù)就負(fù),異則需添冪符號。
因式分解
一提二套三分組,十字相乘也上數(shù)。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數(shù)。
多種方法靈活選,連乘結(jié)果是基礎(chǔ)。
同式相乘若出現(xiàn),乘方表示要記住。
【注】一提(提公因式)二套(套公式)
因式分解
一提二套三分組,叉乘求根也上數(shù)。
五種方法都不行,拆項添項去重組。
對癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。
二次三項式的因式分解
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例
兩數(shù)相除也叫比,兩比相等叫比例。
外項積等內(nèi)項積,等積可化八比例。
分別交換內(nèi)外項,統(tǒng)統(tǒng)都要叫更比。
同時交換內(nèi)外項,便要稱其為反比。
前后項和比后項,比值不變叫合比。
前后項差比后項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比后項和,比值不變叫等比。
解比例
外項積等內(nèi)項積,列出方程并解之。
求比值
由已知去求比值,多種途徑可利用。
活用比例七性質(zhì),變量替換也走紅。
消元也是好辦法,殊途同歸會變通。
正比例與反比例
商定變量成正比,積定變量成反比。
正比例與反比例
變化過程商一定,兩個變量成正比。
變化過程積一定,兩個變量成反比。
判斷四數(shù)成比例
四數(shù)是否成比例,遞增遞減先排序。
兩端積等中間積,四數(shù)一定成比例。
判斷四式成比例
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項
成比例的四項中,外項相同會遇到。
有時內(nèi)項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內(nèi)項會相同,比例中項出現(xiàn)了。
同數(shù)平方等異積,比例中項無處逃。
根式與無理式
表示方根代數(shù)式,都可稱其為根式。
根式異于無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區(qū)分它們有標(biāo)志。
被開方式有字母,又可稱為無理式。
求定義域
求定義域有講究,四項原則須留意。
負(fù)數(shù)不能開平方,分母為零無意義。
指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關(guān),四項原則須注意。
負(fù)數(shù)不能開平方,分母為零無意義。
分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式
先去分母再括號,移項合并同類項。
系數(shù)化“1”有講究,同乘除負(fù)要變向。
先去分母再括號,移項別忘要變號。
同類各項去合并,系數(shù)化“1”注意了。
同乘除正無防礙,同乘除負(fù)也變號。
解一元一次不等式組
大于頭來小于尾,大小不一中間找。
大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現(xiàn)。
幼兒園小鬼當(dāng)家,(同小相對取較小)
敬老院以老為榮,(同大就要取較大)
軍營里沒老沒少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,構(gòu)造函數(shù)第二站。
判別式值若非負(fù),曲線橫軸有交點。
A正開口它向上,大于零則取兩邊。
代數(shù)式若小于零,解集交點數(shù)之間。
方程若無實數(shù)根,口上大零解為全。
小于零將沒有解,開口向下正相反。
用平方差公式因式分解
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結(jié)果就是它。
用完全平方公式因式分解
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,方正倍積要為負(fù)。
兩邊為負(fù)中間正,底差平方相反數(shù)。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,兩端為正倍積負(fù)。
兩邊若負(fù)中間正,底差平方相反數(shù)。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調(diào)整系數(shù)隨其后,使其成為最簡比。
確定參數(shù)abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
用常規(guī)配方法解一元二次方程
左未右已先分離,二系化“1”是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合并,直接開方去解題。
該種解法叫配方,解方程時多練習(xí)。
用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。
調(diào)整系數(shù)等互反,和差積套恒等式。
完全平方等常數(shù),間接配方顯優(yōu)勢。
【注】恒等式
解一元二次方程
方程沒有一次項,直接開方最理想。
如果缺少常數(shù)項,因式分解沒商量。
。、c相等都為零,等根是零不要忘。
。、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數(shù)的鑒別
判斷正比例函數(shù),檢驗當(dāng)分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實數(shù)都要有。
正比例函數(shù)是否,辨別需分兩步走。
一量表示另一量,有沒有。
若有再去看取值,全體實數(shù)都需要。
區(qū)分正比例函數(shù),衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實數(shù)都要有。
正比例函數(shù)的圖象與性質(zhì)
正比函數(shù)圖直線,經(jīng)過和原點。
K正一三負(fù)二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負(fù)左高右邊低,一大另小下山巒。
一次函數(shù)
一次函數(shù)圖直線,經(jīng)過點。
K正左低右邊高,越走越高向爬山。
K負(fù)左高右邊低,越來越低很明顯。
K稱斜率b截距,截距為零變正函。
反比例函數(shù)
反比函數(shù)雙曲線,經(jīng)過點。
K正一三負(fù)二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負(fù)左低右邊高,二四象限如爬山。
二次函數(shù)
二次方程零換y,二次函數(shù)便出現(xiàn)。
全體實數(shù)定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調(diào)正相反。
A定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點后連線,平移規(guī)律記心間。
左加右減括號內(nèi),號外上加下要減。
二次方程零換y,就得到二次函數(shù)。
圖像叫做拋物線,定義域全體實數(shù)。
A定開口及大小,開口向上是正數(shù)。
絕對值大開口小,開口向下A負(fù)數(shù)。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標(biāo)最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點后連線,三點大致定全圖。
若要平移也不難,先畫基礎(chǔ)拋物線,
頂點移到新位置,開口大小隨基礎(chǔ)。
【注】基礎(chǔ)拋物線
直線、射線與線段
直線射線與線段,形狀相似有關(guān)聯(lián)。
直線長短不確定,可向兩方無限延。
射線僅有一端點,反向延長成直線。
線段定長兩端點,雙向延伸變直線。
兩點定線是共性,組成圖形最常見。
角
一點出發(fā)兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補角。
一點出發(fā)兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
鈍角界于直平間,平周之間叫優(yōu)角。
和為直角叫互余,互為補角和平角。
證等積或比例線段
等積或比例線段,多種途徑可以證。
證等積要改等比,對照圖形看特征。
共點共線線相交,平行截比把題證。
三點定型十分像,想法來把相似證。
圖形明顯不相似,等線段比替換證。
換后結(jié)論能成立,原來命題即得證。
實在不行用面積,射影角分線也成。
只要學(xué)習(xí)肯登攀,手腦并用無不勝。
解無理方程
一無一有各一邊,兩無也要放兩邊。
乘方根號無蹤跡,方程可解無負(fù)擔(dān)。
兩無一有相對難,兩次乘方也好辦。
特殊情況去換元,得解驗根是必然。
解分式方程
先約后乘公分母,整式方程轉(zhuǎn)化出。
特殊情況可換元,去掉分母是出路。
求得解后要驗根,原留增舍別含糊。
列方程解應(yīng)用題
列方程解應(yīng)用題,審設(shè)列解雙檢答。
審題弄清已未知,設(shè)元直間兩辦法。
列表畫圖造方程,解方程時守章法。
檢驗準(zhǔn)且合題意,問求同一才作答。
添加輔助線
學(xué)習(xí)幾何體會深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規(guī)律,真知灼見靠實踐。
圖中已知有中線,倍長中線把線連。
旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。
多條中線連中點,便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現(xiàn)。
角分線若加垂線,等腰三角形可見。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫虛線,便與原圖聯(lián)系看。
兩點間距離公式
同軸兩點求距離,大減小數(shù)就為之。
與軸等距兩個點,間距求法亦如此。
平面任意兩個點,橫縱標(biāo)差先求值。
差方相加開平方,距離公式要牢記。
矩形的判定
任意一個四邊形,三個直角成矩形;
對角線等互平分,四邊形它是矩形。
已知平行四邊形,一個直角叫矩形;
兩對角線若相等,理所當(dāng)然為矩形。
菱形的判定
任意一個四邊形,四邊相等成菱形;
四邊形的對角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;
兩對角線若垂直,順理成章為菱形
【初中數(shù)學(xué)代數(shù)公式】相關(guān)文章:
數(shù)學(xué)直線的方程公式12-31
小升初考試數(shù)學(xué)復(fù)習(xí)公式歸納05-22
五年級數(shù)學(xué)公式06-06
關(guān)于小學(xué)生數(shù)學(xué)行程問題公式05-17