一、《集合與函數(shù)》
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。
指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無(wú)對(duì)數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。
兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱(chēng),Y=X是對(duì)稱(chēng)軸;
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來(lái)函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。
二、《三角函數(shù)》
三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;
中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是對(duì)角,
頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,
變成稅角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱(chēng)。
計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變。
逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。
萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;
1加余弦想余弦,1 減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集;
三、《不等式》
解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無(wú)理不等式,化為有理不等式。
高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。
證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭(zhēng)高下。
直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來(lái)幫助,畫(huà)圖建模構(gòu)造法。
四、《數(shù)列》
等差等比兩數(shù)列,通項(xiàng)公式N項(xiàng)和。兩個(gè)有限求極限,四則運(yùn)算順序換。
數(shù)列問(wèn)題多變幻,方程化歸整體算。數(shù)列求和比較難,錯(cuò)位相消巧轉(zhuǎn)換,
取長(zhǎng)補(bǔ)短高斯法,裂項(xiàng)求和公式算。歸納思想非常好,編個(gè)程序好思考:
一算二看三聯(lián)想,猜測(cè)證明不可少。還有數(shù)學(xué)歸納法,證明步驟程序化:
首先驗(yàn)證再假定,從 K向著K加1,推論過(guò)程須詳盡,歸納原理來(lái)肯定。
[高中數(shù)學(xué)公式口訣]