- 相關(guān)推薦
平行線的判定證明題
平行線的判定證明題1)兩條平行線被第三條直線所截,同位角相等;(2)兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等;(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。 (1)兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;(2)兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行;(3)兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線平行。按這個(gè)判定,絕對(duì)沒錯(cuò)。這兩種的第一條都沒有辦法判定,而后兩條就完全可以按照第一條來判定,最后的結(jié)果一定是對(duì)的。
2
平行線的性質(zhì):(1)兩條平行線被第三條直線所截,同位角相等;(2)兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等;(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。 平行線的判定定理:(1)兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;(2)兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行;(3)兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線平行。
平行線的性質(zhì):在同一平面內(nèi)永不相交的兩條直線叫做平行線。平行線的判定定理:(1)兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;(2)兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行;(3)兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線平行。
3
光學(xué)原理。
延長(zhǎng)GE角CD于Q
因?yàn)椤?=∠3,所以AB∥CD
由AB∥CD可得∠1=∠GQD
又∠1=∠4
所以∠4=∠GQD
所以GQ∥FH 即:GE∥FH
因?yàn)椤?=∠3
所以AB∥CD
所以角CFE=角FEB
所以大角HFE=大角FEG
所以HF∥GE
4
)要證明AB∥GD,只要證明∠1=∠BAD即可,根據(jù)∠1=∠2,只要再證明∠2=∠BAD即可證得;
(2)根據(jù)AB∥CD,∠1:∠2:∠3=1:2:3即可求得三個(gè)角的度數(shù),再根據(jù)∠EBA與∠ABD互補(bǔ),可求得∠EBA的度數(shù),即可作出判斷.解答:解:(1)證明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90°(垂直的定義)
∴EF∥AD(同位角相等,兩直線平行)(2分)
∴∠2=∠BAD(兩直線平行,同位角相等)(3分)
∵∠1=∠2,(已知)
∴∠1=∠BAD(等量代換)
∴AB∥DG.(內(nèi)錯(cuò)角相等,兩直線平行)(4分)
(2)判斷:BA平分∠EBF(1分)
證明:∵∠1:∠2:∠3=1:2:3
∴可設(shè)∠1=k,∠2=2k,∠3=3k(k>0)
∵AB∥CD
∴∠2+∠3=180°(2分)
∴2k+3k=180°
∴k=36°
∴∠1=36°,∠2=72°(4分)
∴∠ABE=72°(平角定義)
∴∠2=∠ABE
∴BA平分∠EBF(角平分線定義).(5分)
【平行線的判定證明題】相關(guān)文章:
平行線及其判定教案04-28
10.4平行線的判定教案04-30
幾何證明題04-29
平行線的判定北師大版數(shù)學(xué)初二下冊(cè)教案10-15
初中幾何證明題的入門的論文04-27
教案《平行線》04-25
平行線作文11-28
高中數(shù)學(xué)證明題04-30
矩形的判定檢測(cè)題04-28