- 相關(guān)推薦
天文學(xué)畢業(yè)論文
天文學(xué)是研究宇宙空間天體、宇宙的結(jié)構(gòu)和發(fā)展的學(xué)科。下面,小編為大家分享天文學(xué)畢業(yè)論文,希望對(duì)大家有所幫助!
摘 要:空間物理學(xué)日趨成熟,既豐富了人類對(duì)地球和行星空間的認(rèn)識(shí),也引申出更具挑戰(zhàn)性的問題。一些涉及行星演化問題的解決倚賴與其他學(xué)科的交叉探索,要求研究者從行星地球的視角出發(fā),把地球視為一個(gè)從地核到磁層的多圈層耦合系統(tǒng)。作為系統(tǒng)外層環(huán)節(jié)的空間環(huán)境,其中的問題可通過比較行星研究的思路找到突破口。基于學(xué)科交叉的比較行星空間物理研究將是未來空間物理學(xué)的一個(gè)重要發(fā)展方向。闡述比較行星空間物理研究的思路和必要性,梳理研究現(xiàn)狀,并展望研究前景。
關(guān) 鍵 詞:空間物理; 磁層; 電離層; 行星; 比較行星學(xué)
1 空間物理研究的挑戰(zhàn)和機(jī)遇
空間物理學(xué)主要研究空間環(huán)境中的物理過程,其發(fā)展得益于人們對(duì)于空間中各種現(xiàn)象的好奇心所驅(qū)動(dòng)的探索行為。縱觀數(shù)千年來世界各地文明流傳下來的史料,圍繞極光、氣輝、慧尾、黑子等具有視覺沖擊力的空間現(xiàn)象,觀測(cè)記錄數(shù)量愈益豐富,認(rèn)知思辨水平逐漸提高,衍生出多種具有地域特色的人與自然文化體系,并以神話、傳說、禮儀、哲學(xué)等形式傳承至今。尤其是封建時(shí)代的中華文明,長期推崇“天人合一”的理念,使得包括空間現(xiàn)象在內(nèi)的各種“天象”成為影響文明進(jìn)程的一個(gè)重要因素。例如,極光和慧尾等現(xiàn)象往往與民族興衰、王朝更迭、邦交征伐等重大歷史事件聯(lián)系起來[1].由于觀測(cè)和記錄行為具有政治嚴(yán)肅性,許多較為顯著的現(xiàn)象被詳細(xì)記錄下來,成為了解空間環(huán)境長期變化的重要參考資料。例如,公元 1645-1715 年歐洲和亞洲的極光觀測(cè)記錄同時(shí)大幅減少,成為孟德爾極小期存在的重要佐證[2].
空間物理學(xué)的形成與發(fā)展依賴觀測(cè)技術(shù)的進(jìn)步。盡管地面觀測(cè)已持續(xù)數(shù)千年,人們始終無法知曉空間中物理過程的觸發(fā)、發(fā)展和變化機(jī)理。直到最近 100 多年,磁強(qiáng)計(jì)、電離層測(cè)高儀等地面觀測(cè)設(shè)備的持續(xù)運(yùn)行,探空氣球、火箭和大功率雷達(dá)技術(shù)的不斷進(jìn)步,使得人們終于告別裸眼觀測(cè)的時(shí)代,本質(zhì)上提高了認(rèn)知空間的能力。20 世紀(jì) 50 年代末期,人造衛(wèi)星及其搭載的場(chǎng)和粒子探測(cè)儀器實(shí)現(xiàn)了空間實(shí)地探測(cè),促成了空間物理研究的飛躍,使其能夠從地球物理、大氣物理、天文等學(xué)科的交叉狀態(tài)中發(fā)展起來,形成一門獨(dú)立的學(xué)科[3].時(shí)至今日,空間物理研究者已經(jīng)掌握了地球空間環(huán)境中各個(gè)區(qū)域的電磁場(chǎng)和粒子的平均特征及其最主要的變化規(guī)律,并在一定程度上理解了背后的主要物理過程; 對(duì)行星際空間的平靜和擾動(dòng)狀態(tài)也有了全局性的了解,并具備了初步的預(yù)報(bào)能力; 對(duì)太陽系其他行星的空間環(huán)境有了基本認(rèn)識(shí),并能夠歸納出其與地球空間環(huán)境的主要異同之處。如果把理論體系架構(gòu)的基本完善作為學(xué)科成熟的標(biāo)志,那么可以認(rèn)為空間物理學(xué)正處在一個(gè)接近成熟的階段。
當(dāng)前空間物理發(fā)展階段具有與其他學(xué)科同階段的類似特征。表面上看,經(jīng)過數(shù)十年的觀測(cè)數(shù)據(jù)和相關(guān)知識(shí)的積累,論文產(chǎn)出量加速增長,研究似乎變得越來越容易。實(shí)際上是研究難度持續(xù)增加,“瓶頸效應(yīng)”越來越明顯?梢詮目臻g探測(cè)和研究行為兩方面來理解這一特征。
從空間探測(cè)來看,主要體現(xiàn)在從基于單衛(wèi)星計(jì)劃的“普查”式研究過渡到基于多衛(wèi)星計(jì)劃的針對(duì)性研究。20 世紀(jì) 60 年代前后屬于早期探索階段,地球空間的廣袤區(qū)域中充滿了未知,單顆衛(wèi)星在運(yùn)行過程中通?梢援a(chǎn)生多個(gè)重要發(fā)現(xiàn),甚至包括意外發(fā)現(xiàn)。借助單顆衛(wèi)星探測(cè)的方法基本實(shí)現(xiàn)了空間大尺度電磁場(chǎng)和等離子體狀態(tài)的普查,確定了各區(qū)域的標(biāo)志性特征,并勾勒出其基本變化規(guī)律。同時(shí)也了解到,空間中的場(chǎng)和粒子存在各種尺度的時(shí)間和空間變化,而單衛(wèi)星探測(cè)并不能對(duì)其進(jìn)行區(qū)分,于是不得不引入各種假設(shè)來簡化問題。為了突破這一瓶頸,必須采用多衛(wèi)星同時(shí)探測(cè)的方式。歐洲太空局在 2000 年發(fā)射了Cluster 衛(wèi)星簇,4 顆衛(wèi)星聯(lián)合觀測(cè)將以亞暴為代表的全球尺度問題和以磁場(chǎng)重聯(lián)為代表的微小尺度問題的研究向前推進(jìn)了一大步。中國在 2003-2004 年實(shí)施了“雙星計(jì)劃”,并與 Cluster 聯(lián)合形成 6 星聯(lián)測(cè)。美國航空航天局 2007 年發(fā)射包含 5 顆衛(wèi)星的 THE-MIS 計(jì)劃,針對(duì)亞暴問題進(jìn)行研究; 2015 發(fā)射包含 4顆衛(wèi)星的 MMS 計(jì)劃對(duì)磁場(chǎng)重聯(lián)問題進(jìn)行研究。不難看出,這些多衛(wèi)星探測(cè)計(jì)劃通常設(shè)計(jì)用來解決較為具體的重要科學(xué)問題。
從研究行為來看,主要體現(xiàn)在對(duì)研究者的能力要求越來越高。研究能力受限于研究者的知識(shí)寬度、理論架構(gòu)、邏輯思辨力、思維習(xí)慣、數(shù)據(jù)敏感度、工作經(jīng)驗(yàn)等方面。早期探索時(shí)期的工作方式注重于在解讀數(shù)據(jù)的基礎(chǔ)上建立理論,其難點(diǎn)在于太陽風(fēng)-磁層-電離層-中高層大氣耦合鏈中單個(gè)因果關(guān)系的猜測(cè)與識(shí)別; 而現(xiàn)階段科學(xué)發(fā)現(xiàn)的產(chǎn)出方式則更傾向于從理論出發(fā),鎖定證實(shí)或證偽的關(guān)鍵環(huán)節(jié),然后有目的地尋找對(duì)應(yīng)的觀測(cè)數(shù)據(jù),其難點(diǎn)不僅包括因果關(guān)系的猜測(cè)與識(shí)別,更在于對(duì)現(xiàn)有理論的深刻認(rèn)識(shí)和對(duì)觀測(cè)數(shù)據(jù)的精準(zhǔn)理解。這些特征對(duì)研究者和研究者共同體的時(shí)間和精力構(gòu)成挑戰(zhàn),其最優(yōu)選擇必然是根據(jù)自己的研究興趣,清楚認(rèn)識(shí)研究特長,選擇最有可能在較短時(shí)間內(nèi)取得重大進(jìn)展的研究方向。
進(jìn)一步講,空間物理現(xiàn)階段的本質(zhì)特征可以概括為投入產(chǎn)出比的持續(xù)下降。就空間探測(cè)而言,衛(wèi)星平臺(tái)和載荷的造價(jià)越來越高昂,卻旨在解決少數(shù)關(guān)鍵科學(xué)問題; 就研究行為而言,研究者的入門專業(yè)訓(xùn)練內(nèi)容逐漸增加,研究思路和研究方法的創(chuàng)新難度加大,而做出重要科學(xué)發(fā)現(xiàn)的幾率卻不如以前。當(dāng)然,這僅僅是從學(xué)科發(fā)展共性的角度來論述。從科學(xué)發(fā)展的角度來講則很不同,關(guān)鍵科學(xué)問題的解決正是量變到質(zhì)變的轉(zhuǎn)折點(diǎn),例如,磁場(chǎng)重聯(lián)的解決不僅有助于理解整個(gè)太陽系乃至宇宙中磁化等離子體中的能量轉(zhuǎn)化方式,還可能幫助緩解未來能源危機(jī)。持續(xù)增加對(duì)傳統(tǒng)研究的投入始終是主流之策。
研究人員認(rèn)為,當(dāng)前一些重要的空間物理學(xué)前沿問題必須通過突破學(xué)科壁壘來取得進(jìn)展。傳統(tǒng)的空間物理研究著眼于空間環(huán)境中所發(fā)生的過程,但一些重要過程的驅(qū)動(dòng)因素或控制因素來自于空間環(huán)境之外。例如,空間環(huán)境參數(shù)長期變化問題。眾所周知,地磁場(chǎng)與太陽風(fēng)相互作用形成磁層,同時(shí)地磁場(chǎng)也是控制磁層和電離層等離子體運(yùn)動(dòng)的基本物理場(chǎng)之一,F(xiàn)代地磁觀測(cè)顯示,自 1840 年以來地磁場(chǎng)偶極矩持續(xù)衰減了約 10%[4]; 對(duì)電離層近百年的觀測(cè)數(shù)據(jù)分析發(fā)現(xiàn),偶極矩的衰減引起了電離層的變化[5].而古地磁學(xué)研究進(jìn)一步表明,地磁發(fā)電機(jī)至少已存在了 42 億年[6],在此期間偶極矩存在各種時(shí)間尺度和各種幅度的漲落[7].尤為引人注目的是,地磁極性倒轉(zhuǎn)期間,偶極矩強(qiáng)度可下降 1 個(gè)量級(jí)或更甚,且平均持續(xù)時(shí)間近萬年。這種地磁場(chǎng)變化會(huì)對(duì)空間環(huán)境造成怎樣的變化? 空間環(huán)境的變化是否又影響了地球的演化? 對(duì)于這些重大問題,依賴于觀測(cè)數(shù)據(jù)的傳統(tǒng)空間物理研究方法不再適用,因?yàn)榭臻g環(huán)境的主要參數(shù),如磁層的尺度、電離層 F2 層峰高等不會(huì)在巖石、樹輪等常見介質(zhì)中記錄下來,且目前也未發(fā)現(xiàn)其他任何可以記錄下這些信息的介質(zhì)。這些屬于空間物理學(xué)的問題實(shí)際上挑戰(zhàn)了空間物理學(xué)自身,惟有打破學(xué)科壁壘,借助與其他學(xué)科的交叉研究才有可能找到答案。
空間物理學(xué)現(xiàn)階段的難題給學(xué)科本身的發(fā)展形成挑戰(zhàn),同時(shí)也帶來機(jī)遇。現(xiàn)代科學(xué)史反復(fù)證明,一個(gè)學(xué)科的日趨成熟能夠?qū)︵徑鼘W(xué)科產(chǎn)生促進(jìn)作用,而被促進(jìn)的學(xué)科亦可加速該學(xué)科的發(fā)展,學(xué)科間交叉融合,互相促進(jìn),形成了現(xiàn)代科學(xué)的發(fā)展脈絡(luò)。如今學(xué)科分支繁雜程度達(dá)到歷史頂峰,任何一個(gè)領(lǐng)域的研究者都必須通過自身的徹底專業(yè)化才能開展有效研究。因此,學(xué)科交叉和研究者跨領(lǐng)域合作,是科學(xué)發(fā)展的內(nèi)在需求,也必然是未來的主要趨勢(shì)。空間環(huán)境是地球多圈層系統(tǒng)的最外層,又是日地關(guān)系鏈的中間環(huán)節(jié),其在地球科學(xué)中的重要性不言而喻?臻g物理學(xué)的日漸成熟為理解地球系統(tǒng)的運(yùn)行和演化規(guī)律提供了必要條件,其與地球科學(xué)其他分支學(xué)科的交叉融合也必然會(huì)推動(dòng)自身和整個(gè)地球科學(xué)的發(fā)展。
2 “行星地球”視角下的空間物理學(xué)
“行星地球”視角在本質(zhì)上是地球系統(tǒng)科學(xué)的思路,即將地球視為一個(gè)多圈層耦合的復(fù)雜系統(tǒng),各圈層通過物理、化學(xué)和動(dòng)力學(xué)過程實(shí)現(xiàn)物質(zhì)和能量的交換、轉(zhuǎn)化和循環(huán),并作為一個(gè)整體系統(tǒng),與外界保持物質(zhì)和能量的交換和轉(zhuǎn)化。這一看似自然的觀點(diǎn)并非研究者頭腦里固有,而是經(jīng)過了長期的發(fā)展形成,且當(dāng)前并沒有得到研究者的普遍重視。正如早期地質(zhì)學(xué)家出于研究方便考慮,傾向于在距離居住地較近的區(qū)域采樣,早期空間物理學(xué)家也傾向于在工作地附近建立觀測(cè)臺(tái)站,研究當(dāng)?shù)氐目臻g環(huán)境特征。這種選址方式顯然在經(jīng)費(fèi)支持、能源供給、設(shè)備維護(hù)等方面具有優(yōu)勢(shì),為長期持續(xù)觀測(cè)創(chuàng)造了便利條件。由于 1600 年 Gilbert 就在《De Magnete》一書中指出地磁場(chǎng)是一個(gè)全球性現(xiàn)象,組織全球臺(tái)站聯(lián)測(cè)成為一些研究者的選擇。例如,1882-1883 年和1932-1933 年2 次國際極地年,1957-1958 年國際地球物理年,都產(chǎn)生了豐碩成果。全球協(xié)作催生和強(qiáng)化了將地球空間作為一個(gè)整體來研究的觀點(diǎn)。時(shí)至今日,研究者已普遍接受,空間物理中的許多現(xiàn)象,比如中低緯電離層等離子體分布特征和南大西洋異常區(qū)的內(nèi)磁層結(jié)構(gòu),由于受到局地地磁場(chǎng)強(qiáng)度、傾角和偏角的控制,確實(shí)具有十分明顯的地域特性。但是,長期的知識(shí)積累也讓研究者認(rèn)識(shí)到,整個(gè)空間環(huán)境是一個(gè)全球尺度的結(jié)構(gòu),其中等離子體的分布狀態(tài)和運(yùn)動(dòng)規(guī)律也主要受地磁場(chǎng)全球位形的影響!叭蚧币暯窃缫殉蔀榭臻g物理研究的一個(gè)基本出發(fā)點(diǎn)。簡言之,對(duì)地球的認(rèn)識(shí)和研究是一個(gè)從“局部到整體”的過程。
人們對(duì)行星的研究則是從“整體到局部”.當(dāng)1609 年伽利略把 10 倍放大能力的望遠(yuǎn)鏡對(duì)準(zhǔn)天空時(shí),行星才從一個(gè)亮點(diǎn)變成有表面細(xì)節(jié)的天體。20世紀(jì)下半葉,人造飛船對(duì)行星空間的實(shí)地探測(cè)和遙感探測(cè)使得行星空間環(huán)境最先被詳細(xì)了解。截至目前,人造飛行器僅在月球、火星、金星、土衛(wèi)六和彗星67P / C-G 5 個(gè)地外天體上進(jìn)行過表面實(shí)地勘測(cè),而地質(zhì)學(xué)常用的人工采樣只在月球上實(shí)現(xiàn)過。由于觀測(cè)能力的限制,對(duì)行星的研究不得不從一開始就試圖從整體上理解,特別是其與地球的異同之處。隨著系外行星不斷被發(fā)現(xiàn),天文學(xué)研究者已經(jīng)習(xí)慣于將系外行星與太陽系行星做對(duì)比,尤其是與地球?qū)Ρ葋碓u(píng)估系外行星的宜居性。
“行星地球”視角是將地球內(nèi)部和空間的各個(gè)圈層都視為一個(gè)耦合的整體系統(tǒng)。事實(shí)上,空間環(huán)境中的多圈層耦合思想在最近 20~30 年已深入人心。電離層-中高層大氣耦合、磁層-電離層耦合、太陽風(fēng)-磁層-電離層耦合等名詞不僅成為許多學(xué)術(shù)論文的關(guān)鍵詞,也經(jīng)常被用來命名論文專輯、學(xué)術(shù)會(huì)議、會(huì)議專輯、學(xué)術(shù)團(tuán)體、探測(cè)項(xiàng)目、研究計(jì)劃等。但是,磁層、電離層、中高層大氣等諸多圈層的耦合發(fā)生在同一個(gè)背景物理場(chǎng)中,即地磁場(chǎng)。地磁場(chǎng)起源于液態(tài)地球外核中的地磁發(fā)電機(jī)過程,而發(fā)電機(jī)過程又受到其外側(cè)的地幔和其內(nèi)側(cè)的內(nèi)核狀態(tài)的影響。換言之,地球的內(nèi)部過程決定了地磁場(chǎng)的狀態(tài)。地磁場(chǎng)不僅定義了地球空間環(huán)境的時(shí)空范圍,調(diào)控絕大部分空間等離子體運(yùn)動(dòng)過程,決定太陽風(fēng)能量輸入效率以及磁層內(nèi)能量的存儲(chǔ)和釋放,并且其本身也能通過磁場(chǎng)重聯(lián)的方式實(shí)現(xiàn)磁能向粒子動(dòng)能和熱能的轉(zhuǎn)化。在空間物理學(xué)發(fā)展歷史中,研究者關(guān)注的物理過程的時(shí)間尺度通常較短,如磁重聯(lián)過程的時(shí)間尺度為秒,亞暴過程的為小時(shí),磁暴過程的為天,涉及到太陽活動(dòng)水平的為年。在這種時(shí)間尺度下,地磁場(chǎng)被默認(rèn)為是穩(wěn)定的背景場(chǎng),地磁發(fā)電機(jī)過程的變化確實(shí)可不予考慮。但在面對(duì)前述的空間環(huán)境參數(shù)長期變化問題時(shí),即在百年或更長的時(shí)間尺度上,發(fā)電機(jī)過程必須被考慮進(jìn)來。于是,地球內(nèi)部和外部空間環(huán)境應(yīng)當(dāng)被視為一個(gè)耦合的整體系統(tǒng),內(nèi)部的發(fā)電機(jī)和太陽是決定空間過程的最主要的 2個(gè)因素。從空間環(huán)境中的多圈層耦合到整個(gè)地球系統(tǒng)的多圈層耦合,是地球科學(xué)發(fā)展的內(nèi)在要求。
實(shí)際上,包含空間環(huán)境在內(nèi)的地球多圈層耦合的思想已有比較長的歷史。早在 1963 年,加拿大地球物理學(xué)家 Uffen[8]發(fā)表了一篇題為《Influence ofthe Earth's core on the origin and evolution of life》的論文,指出地核發(fā)電機(jī)會(huì)通過空間物理過程對(duì)生命的起源與演化造成影響。他從 1959 年地球輻射帶的發(fā)現(xiàn)得到啟發(fā),提出了大膽的猜想: 在地磁倒轉(zhuǎn)時(shí)期,地球磁場(chǎng)減弱為零并持續(xù)幾千年,于是被捕獲在輻射帶中的高能粒子被“傾倒”于地面,造成生物滅絕。文中他又進(jìn)一步引申推測(cè)道: 在地核形成之前,地磁場(chǎng)不可能存在,太陽高能粒子對(duì)地面的轟擊將第 1 期 魏 勇等: 比較行星空間物理17阻止生命形成。這一猜想引發(fā)了持續(xù)十多年的研究熱潮,但隨著小行星撞擊說的提出而式微[9].同時(shí)期空間物理學(xué)處于探索發(fā)現(xiàn)期,研究者們大多被空間中各區(qū)域的新穎的觀測(cè)數(shù)據(jù)所吸引,雖然也有少量探索性工作發(fā)表[9],但多圈層耦合的思想并未被廣泛重視。當(dāng)然,這并非是一件令人遺憾的事情,因?yàn)楫?dāng)時(shí)空間物理學(xué)需要解決的主要問題是探明空間各區(qū)域的磁場(chǎng)和等離子體狀態(tài)以及建立基本理論體系,而非我們現(xiàn)在所遇到的空間環(huán)境參數(shù)長期變化等問題,且古地磁學(xué)等其他相關(guān)學(xué)科也遠(yuǎn)未成熟,尚不具備開展大規(guī)模交叉研究的必要條件。當(dāng)前“行星地球”視角之所以顯得重要和必要,也正是空間物理學(xué)現(xiàn)階段特征和所面臨的重大問題所決定的。
3 比較行星空間物理
比較行星空間物理是指基于“行星地球”視角的空間物理學(xué)的對(duì)比和交叉研究。把地球視為一顆行星,而非我們的“家園”; 把太陽系中所有行星及其衛(wèi)星,甚至系外行星,視為同等重要的研究樣本,是比較行星空間物理研究思路的基本出發(fā)點(diǎn)。比較行星空間物理主要關(guān)注以下 2 個(gè)方面:
3.1 行星空間環(huán)境多樣性比較行星空間物理研究方法曾在行星空間探索中起到了極為重要的作用。地球空間物理研究起步較早,知識(shí)積累遠(yuǎn)多于行星空間,借助地球空間的知識(shí)來對(duì)比理解行星空間,是行星空間研究的重要方法。相比地球,行星探測(cè)計(jì)劃的技術(shù)難度大、造價(jià)高,并且遠(yuǎn)距離數(shù)據(jù)傳輸效率低,造成觀測(cè)數(shù)據(jù)少且質(zhì)量較差。使用少量數(shù)據(jù)研究全球尺度結(jié)構(gòu)比較困難,研究者通常希望通過與地球或其他行星空間物理的知識(shí)框架對(duì)比來增加可用信息量,并以此為根據(jù)做理論假設(shè)。例如,地球電離層的 Chapman 理論比較成熟,金星和火星的電離層的觀測(cè)特征大致符合這一理論,研究者對(duì) Chapman 理論加以調(diào)整,使之能更好地描述觀測(cè)特征,形成了金星和火星電離層的理論框架[10].這種研究思路也同樣用于不同行星、行星衛(wèi)星和彗星之間,尤其在 20 世紀(jì) 80 年代,極大促進(jìn)了對(duì)彗星、金星和火星 3 種無磁星體的空間探索。事實(shí)上,這種比較研究的思路,暗含了一個(gè)假設(shè),即被對(duì)比研究的對(duì)象存在明顯共性。
經(jīng)過數(shù)十年的探索,研究人員已經(jīng)知道,太陽系各行星的空間環(huán)境的確存在許多共性。對(duì)于共性的認(rèn)識(shí)不僅提升了行星空間物理本身的知識(shí)水平,更構(gòu)成了理解深時(shí)和深空問題的重要基礎(chǔ)。近年來,對(duì)于地球生命和宜居性的思考讓研究者們對(duì)各行星的特性的研究興趣快速升溫。相應(yīng)地,空間環(huán)境多樣性也成為空間物理學(xué)的關(guān)注熱點(diǎn)。根據(jù)演繹邏輯所主張的思維規(guī)律,如果想要找出某種現(xiàn)象產(chǎn)生的原因,較為有效的方法是對(duì)比該特性出現(xiàn)和不出現(xiàn)2 種情況下與之同步變化的控制參量。因此,通過多行星對(duì)比研究,才有望探知各行星空間環(huán)境特性的成因及效應(yīng)。